A bHLH (basic helix-loop-helix domain) transcription factor involved in tolerance to Pi starvation was cloned from Zea mays with an RT-PCR coupled RACE approach and named ZmPTF1. ZmPTF1 encoded a putative protein of 481 amino acids that had identity with OsPTF1 in basic region. Real-time RT-PCR revealed that ZmPTF1 was quickly and significantly up-regulated in the root under phosphate starvation conditions. Overexpression of ZmPTF1 in maize improved root development, enhanced biomass both in hydroponic cultures and sand pots, and the plants developed more tassel branches and larger kernels when they were grown in low phosphate soil. Compared with wild type, overexpressing ZmPTF1 altered the concentrations of soluble sugars in transgenic plants, in which soluble sugars levels were lower in the leaves and higher in the roots. Overexpression of ZmPTF1 enhanced the expression of fructose-1,6-bisphosphatase and sucrose phosphate synthase1 participated in sucrose synthesis in the leaves but decreased them in the root, and reduced the expression of genes involved in sucrose catabolism in the roots. The modifications on the physiology and root morphology of the plants enhanced low phosphate tolerance and increased the yield under low phosphate conditions. This research provides a useful gene for transgenic breeding of maize that is tolerant to phosphate deficiency and is helpful for exploring the relationship between sugar signaling and phosphate concentrations in cells.
Suboptimal status of both thiamin and riboflavin were common in Cambodian women, with substantially higher rates among women living in rural Prey Veng than in urban Phnom Penh. Strategies may be needed to improve the thiamin and riboflavin status of women in Cambodia. The unexpected finding of high riboflavin inadequacy status in Vancouver women warrants further investigation.
The thermal stability of L-5-methyltetrafolic acid (L-5-MTHF) was investigated in model/buffer systems and food systems. L-5-MTHF degradation followed first-order reaction kinetics with relatively greater (P < 0.01) stability at pH 4 compared to pH 6.8 in the buffer systems. This was confirmed using cyclic voltammetry. The stability (for example, k-values) of L-5-MTHF in an oxygen controlled environment improved (P < 0.001) proportionally when in the presence of increasing molar ratios of sodium ascorbate (NaAsc). The addition of NaAsc to L-5-MTHF after heat treatment was also effective at returning thermally oxidized L-5-MTHF back to its original form. A scheme was developed to explain the degradation and regeneration of L-5-MTHF. The importance of antioxidant protection of L-5-MTHF from thermal oxidation was extended using 2 distinct food systems; namely skim milk and soy milk, both with known antioxidant capacities. We conclude that the antioxidant activity of food components can enhance the stability of L-5-MTHF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.