Previous studies have shown that structure has a significant influence on the mechanical deformation of unsaturated loess, but there is little published information focused on the influence mechanism of microstructure and mesostructure on the mechanical properties of loess. In this paper, the unsaturated undisturbed loess and its remolded loess under the same physical condition were taken as the research objects. The unsaturated triaxial shear tests with constant suction and net confining pressure were carried out, and the microstructure differences between the two are compared by using SEM and CT scanning to reveal the influence of structure on strength characteristics. The test results show that the cohesion and internal friction angle of undisturbed loess are greater than those of remolded loess. The angle of undisturbed soil particles is obvious, and the particles are bracket contact with good cementation. The remolded loess particles are close to round shape, and the particles are inlaid contact with destroyed cementation. The average radius of undisturbed soil is higher than that of remolded soil, indicating that there are bracket pores in undisturbed soil, but the bracket structure and macropores are deformed during shear deformation, and good structural and cementation ensure the strength of loess specimens.
Operation scheduling of apron support vehicles is an important factor affecting aircraft support capability. However, at present, the traditional support methods have the problems of low utilization rate of support vehicles and low support efficiency in multi-aircraft support. In this paper, a vehicle scheduling model is constructed, and a multi-layer coding genetic algorithm is designed to solve the vehicle scheduling problem. In this paper, the apron support vehicle operation scheduling problem is regarded as a Resource-Constrained Project Scheduling Problem (RCPSP), and the support vehicles and their support procedures are adjusted via the sequential sorting method to achieve the optimization goals of shortening the support time and improving the vehicle utilization rate. Based on a specific example, the job scheduling before and after the optimization of the number of support vehicles is simulated using a multi-layer coding genetic algorithm. The results show that compared with the traditional support scheme, the vehicle scheduling time optimized via the multi-layer coding genetic algorithm is obviously shortened; after the number of vehicles is optimized, the support time is further shortened and the average utilization rate of vehicles is improved. Finally, the optimized apron support vehicle number configuration and the best scheduling scheme are given.
The mechanical properties of loess-steel interface are of great significance for understanding the residual strength and deformation of loess. However, the undisturbed loess has significant structural properties, while the remolded loess has weak structural properties. There are few reports on the mechanical properties of loess-steel interface from the structural point of view. This paper focused on the ring shear test between undisturbed loess as well as its remolded loess and steel interface under the same physical mechanics and test conditions (water content, shear rate and vertical pressure), and explored the influence mechanism of structure on the mechanical deformation characteristics of steel-loess interface. The results show that the shear rate has little effect on the residual strength of the undisturbed and remolded loess-steel interface. However, the water content has a significant influence on the residual strength of the loess-steel interface, moreover, the residual internal friction angle is the dominant factor supporting the residual strength of the loess-steel interface. In general, the residual strength of the undisturbed loess-steel interface is greater than that of the remolded loess specimen (for example, the maximum percentage of residual strength difference between undisturbed and remolded loess specimens under the same moisture content is 6.8%), which is because that compared with the mosaic arrangement structure of the remolded loess, the overhead arrangement structure of the undisturbed loess skeleton particles makes the loess particles on the loess-steel interface re-adjust the arrangement direction earlier and reach a stable speed relatively faster. The loess particles with angular angles in the undisturbed loess make the residual internal friction between the particles greater than the smoother particles of the remolded loess (for example, the maximum percentage of residual cohesion difference between undisturbed and remolded loess specimens under the same vertical pressure is 4.29%), and the intact cement between undisturbed loess particles brings stronger cohesion than the remolded loess particles with destroyed cement (for example, the maximum difference percentage of residual cohesion between undisturbed and remolded soil specimens under the same vertical pressure is 33.80%). The test results provide experimental basis for further revealing the influence mechanism of structure, and parameter basis for similar engineering construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.