An experimental investigation on the thermo-mechanical and moisture absorption properties of lightweight geopolymer concrete prepared with fly ash, NaOH, sodium silicate and Polypropylene Fibers (PF) is presented in this study. The effects of dry density, NaOH, PF, aggregates and hydrophobic agent on the compressive strength, thermal properties and moisture absorption were studied. Results indicate that thermo-mechanical properties of Fly ash-based Lightweight Geopolymer Concrete (FLGC) strongly depend on the dry density, NaOH, PF and aggregates contents. The increase in dry density and fine aggregate contents resulted in higher compressive strength and thermal conductivity. NaOH within mass ratio of 0-10% is able to enhance thermo-mechanical properties. The optimal compressive strength was achieved when the length and content of the PF was 12 mm and 0.5% respectively. Meanwhile, PF in the range of 0-1% can also increase thermal conductivity and enhance moisture absorption. The increase in coarse aggregate ranging from 0 to 15% led to reduced dry density and thermal conductivity and enhanced moisture absorption, but did not affect compressive strength. Interestingly, the decrease in fine aggregate with the same content had the opposite impact to the moisture absorption in comparison to the coarse aggregate. However, the moisture absorption can be considerably weakened by surface *Revised Manuscript Click here to view linked References waterproofing treatment which makes the enhanced thermal performance durable. Therefore, the FLGC reinforced by PF has excellent thermo-mechanical properties and can also be engineered to be an environmentally friendly and durable thermal insulation material with the assistance of waterproofing treatment.
Leucine (Leu) plays an important role in protein synthesis and metabolism. The present study tested whether Leu supplementation in the diet for sows during late pregnancy could improve piglet birth weight, and it also investigated the possible underlying mechanism. Two hundred sows at day 70 of pregnancy were selected and assigned to four groups fed with following four diets until farrowing, respectively: corn and soybean meal-based diet group (CON), CON + 0.40% Leu, CON + 0.80% Leu, and CON + 1.20% Leu. We found that supplementing with 0.80% Leu significantly increased mean piglet birth weight ( P < 0.05). Supplementation with 0.40, 0.80, and 1.20% Leu increased the plasma concentration of Leu, while decreasing the plasma concentrations of valine (Val) and isoleucine (Ile) in both farrowing sows and newborn piglets ( P < 0.05). The protein expressions of amino acid transporters (including LAT1, SNAT1, SNAT2, 4F2hc, and rBAT) in duodenum, jejunum, ileum, longissimus dorsi muscle of newborn piglets, and placenta of sows showed a difference among the CON group and Leu supplemented groups. Expressions of p-mTOR, p-4E-BP1, and p-S6K1 in longissimus dorsi muscle were also enhanced in each of the supplemental Leu groups compared to CON ( P < 0.05). Collectively, these results indicated that 0.40-0.80% Leu supplementation during late gestation enhanced birth weight of fetal pigs by increasing protein synthesis through modulation of the plasma amino acids profile, amino acid transporters expression, and mTOR signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.