In Aspergillus nidulans the xanA gene codes for a xanthine alpha-ketoglutarate-dependent dioxygenase, an enzyme only present in the fungal kingdom. The 5' region of this gene, including its putative promoter and the first 54 codons of the open reading frame, together with the first intron is duplicated in the genome. This duplication corresponds to a helitron, a eukaryotic element proposed to transpose replicatively by the rolling circle mechanism. We show that the regulation of xanA conforms to that of other genes of the purine degradation pathway, necessitating the specific UaY transcription factor and the AreA GATA factor. The promoter of the duplicated region is active ectopically and the difficulty in detecting an mRNA from the duplicated region is at least partially due to nonsense-mediated decay. Comparative genomic data are only consistent with the hypothesis that the 5' region of xanA pre-existed the helitron insertion, and that a 'secondary helitron' was generated from an insertion 5' to it and a pre-existing 3' consensus sequence within the open reading frame. It is possible to propose a role of helitrons in promoter shuffling and thus in recruiting new genes into specific regulatory circuits.
Clavispora santaluciae was recently described as a novel non-Saccharomyces yeast species, isolated from grapes of Azores vineyards, a Portuguese archipelago with particular environmental conditions, and from Italian grapes infected with Drosophila suzukii. In the present work, the genome of five Clavispora santaluciae strains was sequenced, assembled, and annotated for the first time, using robust pipelines, and a combination of both long- and short-read sequencing platforms. Genome comparisons revealed specific differences between strains of Clavispora santaluciae reflecting their isolation in two separate ecological niches—Azorean and Italian vineyards—as well as mechanisms of adaptation to the intricate and arduous environmental features of the geographical location from which they were isolated. In particular, relevant differences were detected in the number of coding genes (shared and unique) and transposable elements, the amount and diversity of non-coding RNAs, and the enzymatic potential of each strain through the analysis of their CAZyome. A comparative study was also conducted between the Clavispora santaluciae genome and those of the remaining species of the Metschnikowiaceae family. Our phylogenetic and genomic analysis, comprising 126 yeast strains (alignment of 2362 common proteins) allowed the establishment of a robust phylogram of Metschnikowiaceae and detailed incongruencies to be clarified in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.