The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas, but rarely in pilocytic astrocytomas. Using a loss of function approach we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 mRNA expression were associated with aggressive molecular subsets of glioblastoma and with a non-significant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.
The cellular reprogramming factor LIN28A promotes tumorigenicity in cancers arising outside the central nervous system, but its role in brain tumors is unknown. We detected LIN28A protein in a subset of human gliomas observed higher expression in glioblastoma (GBM) than in lower grade tumors. Knockdown of LIN28A using lentiviral shRNA in GBM cell lines inhibited their invasion, growth and clonogenicity. Expression of LIN28A in GBM cell lines increased the number and size of orthotopic xenograft tumors. LIN28A expression also enhanced the invasiveness of GBM cells in vitro and in vivo. Increasing LIN28A was associated with down-regulation of tumor suppressing microRNAs let-7b and let-7g and up-regulation of the chromatin modifying protein HMGA2. The increase in tumor cell aggressiveness in vivo and in vitro was accompanied by an upregulation of pro-invasive gene expression, including SNAI1. To further investigate the oncogenic potential of LIN28A, we infected hNSC with lentiviruses encoding LIN28A together with dominant negative R248W-TP53, constitutively active KRAS and hTERT. Resulting subclones proliferated at an increased rate and formed invasive GBM-like tumors in orthotopic xenografts in immunodeficient mice. Similar to LIN28A-transduced GBM neurosphere lines, hNSC-derived tumor cells showed increased expression of HMGA2. Taken together, these data suggest a role for LIN28A in high grade gliomas and illustrate an HMGA2-associated, pro-invasive program that can be activated in GBM by LIN28A-mediated suppression of let-7 microRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.