A virtual power plant takes advantage of interactive communication and energy management systems to optimize and coordinate the dispatch of distributed generation, interruptible loads, energy storage systems and battery switch stations, so as to integrate them as an entity to exchange energy with the power market. This paper studies the optimal dispatch strategy of a virtual power plant, based on a unified electricity market combining day-ahead trading with real-time trading. The operation models of interruptible loads, energy storage systems and battery switch stations are specifically described in the paper. The virtual power plant applies an optimal dispatch strategy to earn the maximal expected profit under some fluctuating parameters, including market price, retail price and load demand. The presented model is a nonlinear mixed-integer programming with inter-temporal constraints and is solved by the fruit fly algorithm.
Abstract:In power system control unicontrol with single storage units or centralized control with multiple storage units to meet different level targets is challenging. Considering the charge and discharge characteristics of storage devices, this paper proposes a hierarchical configuration structure of a battery and supercapacitor mixed storage scenario, and develops a convenient control method for accessing various DC loads and can central manage mass batteries in one place. Aiming at the optimal management of large scale battery storage, the paper proposes a three-layer battery hierarchical control structure and the control objects and control circuits are discussed. Simulation studies are used to verify the control effect of the hierarchical storage system and the results show that the strategy can effectively decrease photovoltaic output fluctuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.