Traditional Chinese medicine (TCM) has a long history and been widely used in prevention and treatment of epilepsy in China. This paper is intended to review the advances in the active anticonvulsant compounds isolated from herbs in the prescription of TCM in the treatment of epilepsy. These compounds were introduced with the details including classification, CAS number specific structure and druggability data. Meanwhile, much of the research in these compounds in the last two decades has shown that they exhibited favorable pharmacological properties in treatment of epilepsy both in in vivo and in vitro models. In addition, in this present review, the evaluation of the effects of the anticonvulsant classical TCM prescriptions is discussed. According to these rewarding pharmacological effects and chemical substances, the prescription of TCM herbs could be an effective therapeutic strategy for epilepsy patients, and also could be a promising source for the development of new drugs.
Epilepsy is a common chronic neurological disorder disease, and there is an urgent need for the development of novel anticonvulsant drugs. In this study, the anticonvulsant activities and neurotoxicity of 12 cinnamic acid derivatives substituted by fluorine, chlorine, bromine, and trifluoromethyl groups were screened by the maximal electroshock seizure (MES) and rotarod tests (Tox). Three of the tested compounds (compounds 3, 6 and 12) showed better anticonvulsant effects and lower neurotoxicity. They showed respective median effective dose (ED50) of 47.36, 75.72 and 70.65 mg/kg, and median toxic dose (TD50) of them was greater than 500 mg/kg, providing better protective indices. Meanwhile, they showed a pentylenetetrazol (PTZ) ED50 value of 245.2, >300 and 285.2 mg/kg in mice, respectively. Especially, the most active compound 3 displayed a prominent anticonvulsant profile and had lower toxicity. Therefore, the antiepileptic mechanism of 3 on glycosylation changes in chronic epilepsy in mice was further investigated by using glycomics techniques. Lectin microarrays results showed that epilepsy was closely related to abnormal glycosylation, and 3 could reverse the abnormal glycosylation in scPTZ-induced epilepsy in mice. This work can provide new ideas for future discovery of potential biomarkers for evaluation of antiepileptic drugs based on the precise alterations of glycopatterns in epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.