Ultrasound elastography can quantify stiffness distribution of tissue lesions and complements conventional B-mode ultrasound for breast cancer screening. Recently, the development of computer-aided diagnosis has improved the reliability of the system, whilst the inception of machine learning, such as deep learning, has further extended its power by facilitating automated segmentation and tumour classification. The objective of this review was to summarize application of the machine learning model to ultrasound elastography systems for breast tumour classification. Review databases included PubMed, Web of Science, CINAHL, and EMBASE. Thirteen (n = 13) articles were eligible for review. Shear-wave elastography was investigated in six articles, whereas seven studies focused on strain elastography (5 freehand and 2 Acoustic Radiation Force). Traditional computer vision workflow was common in strain elastography with separated image segmentation, feature extraction, and classifier functions using different algorithm-based methods, neural networks or support vector machines (SVM). Shear-wave elastography often adopts the deep learning model, convolutional neural network (CNN), that integrates functional tasks. All of the reviewed articles achieved sensitivity ³ 80%, while only half of them attained acceptable specificity ³ 95%. Deep learning models did not necessarily perform better than traditional computer vision workflow. Nevertheless, there were inconsistencies and insufficiencies in reporting and calculation, such as the testing dataset, cross-validation, and methods to avoid overfitting. Most of the studies did not report loss or hyperparameters. Future studies may consider using the deep network with an attention layer to locate the targeted object automatically and online training to facilitate efficient re-training for sequential data.
Sleep posture has a crucial impact on the incidence and severity of obstructive sleep apnea (OSA). Therefore, the surveillance and recognition of sleep postures could facilitate the assessment of OSA. The existing contact-based systems might interfere with sleeping, while camera-based systems introduce privacy concerns. Radar-based systems might overcome these challenges, especially when individuals are covered with blankets. The aim of this research is to develop a nonobstructive multiple ultra-wideband radar sleep posture recognition system based on machine learning models. We evaluated three single-radar configurations (top, side, and head), three dual-radar configurations (top + side, top + head, and side + head), and one tri-radar configuration (top + side + head), in addition to machine learning models, including CNN-based networks (ResNet50, DenseNet121, and EfficientNetV2) and vision transformer-based networks (traditional vision transformer and Swin Transformer V2). Thirty participants (n = 30) were invited to perform four recumbent postures (supine, left side-lying, right side-lying, and prone). Data from eighteen participants were randomly chosen for model training, another six participants’ data (n = 6) for model validation, and the remaining six participants’ data (n = 6) for model testing. The Swin Transformer with side and head radar configuration achieved the highest prediction accuracy (0.808). Future research may consider the application of the synthetic aperture radar technique.
Elastography complements traditional medical imaging modalities by mapping tissue stiffness to identify tumors in the endocrine system, and machine learning models can further improve diagnostic accuracy and reliability. Our objective in this review was to summarize the applications and performance of machine-learning-based elastography on the classification of endocrine tumors. Two authors independently searched electronic databases, including PubMed, Scopus, Web of Science, IEEEXpress, CINAHL, and EMBASE. Eleven (n = 11) articles were eligible for the review, of which eight (n = 8) focused on thyroid tumors and three (n = 3) considered pancreatic tumors. In all thyroid studies, the researchers used shear-wave ultrasound elastography, whereas the pancreas researchers applied strain elastography with endoscopy. Traditional machine learning approaches or the deep feature extractors were used to extract the predetermined features, followed by classifiers. The applied deep learning approaches included the convolutional neural network (CNN) and multilayer perceptron (MLP). Some researchers considered the mixed or sequential training of B-mode and elastographic ultrasound data or fusing data from different image segmentation techniques in machine learning models. All reviewed methods achieved an accuracy of ≥80%, but only three were ≥90% accurate. The most accurate thyroid classification (94.70%) was achieved by applying sequential training CNN; the most accurate pancreas classification (98.26%) was achieved using a CNN–long short-term memory (LSTM) model integrating elastography with B-mode and Doppler images.
The objective of this review was to summarize the applications of sonoelastography in testicular tumor identification and inquire about their test performances. Two authors independently searched English journal articles and full conference papers from CINAHL, Embase, IEEE Xplore®, PubMed, Scopus, and Web of Science from inception and organized them into a PIRO (patient, index test, reference test, outcome) framework. Eleven studies (n = 11) were eligible for data synthesis, nine of which (n = 9) utilized strain elastography and two (n = 2) employed shear-wave elastography. Meta-analyses were performed on the distinction between neoplasm (tumor) and non-neoplasm (non-tumor) from four study arms and between malignancy and benignity from seven study arms. The pooled sensitivity of classifying malignancy and benignity was 86.0% (95%CI, 79.7% to 90.6%). There was substantial heterogeneity in the classification of neoplasm and non-neoplasm and in the specificity of classifying malignancy and benignity, which could not be addressed by the subgroup analysis of sonoelastography techniques. Heterogeneity might be associated with the high risk of bias and applicability concern, including a wide spectrum of testicular pathologies and verification bias in the reference tests. Key technical obstacles in the index test were manual compression in strain elastography, qualitative observation of non-standardized color codes, and locating the Regions of Interest (ROI), in addition to decisions in feature extractions. Future research may focus on multiparametric sonoelastography using deep learning models and ensemble learning. A decision model on the benefits–risks of surgical exploration (reference test) could also be developed to direct the test-and-treat strategy for testicular tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.