This study constructs an integrated early warning system (EWS) that identifies and predicts stock market turbulence. Based on switching ARCH (SWARCH) filtering probabilities of the high volatility regime, the proposed EWS first classifies stock market crises according to an indicator function with thresholds dynamically selected by the two-peak method. An hybrid algorithm is then developed in the framework of a long short-term memory (LSTM) network to make daily predictions that alert turmoils. In the empirical evaluation based on ten-year Chinese stock data, the proposed EWS yields satisfying results with the test-set accuracy of 96.6% and on average 2.4 days of forewarned period. The model's stability and practical value in the real-time decision-making are also proven by the cross-validation and back-testing.
With the development of NLP technologies, news can be automatically categorized and labeled according to a variety of characteristics, at the same time be represented as low dimensional embeddings. However, it lacks a systematic approach that effectively integrates the inherited features and inter-textual knowledge of news to represent the collective information with a dense vector. With the aim of filling this gap, the News2vec model is proposed to allow the distributed representation of news taking into account its associated features. To describe the cross-document linkages between news, a network consisting of news and its attributes is constructed. Moreover, the News2vec model treats the news node as a bag of features by developing the Subnode model. Based on the biased random walk and the skip-gram model, each news feature is mapped to a vector, and the news is thus represented as the sum of its features. This approach offers an easy solution to create embeddings for unseen news nodes based on its attributes. To evaluate our model, dimension reduction plots and correlation heat-maps are created to visualize the news vectors, together with the application of two downstream tasks, the stock movement prediction and news recommendation. By comparing with other established text/sentence embedding models, we show that News2vec achieves state-of-the-art performance on these news-related tasks.
In this study, a novel Distributed Representation of News (DRNews) model is developed and applied in deep learning-based stock market predictions. With the merit of integrating contextual information and crossdocumental knowledge, the DRNews model creates news vectors that describe both the semantic information and potential linkages among news events through an attributed news network. Two stock market prediction tasks, namely the short-term stock movement prediction and stock crises early warning, are implemented in the framework of the attention-based Long Short Term-Memory (LSTM) network. It is suggested that DRNews substantially enhances the results of both tasks comparing with five baselines of news embedding models. Further, the attention mechanism suggests that short-term stock trend and stock market crises both receive influences from daily news with the former demonstrates more critical responses on the information related to the stock market per se, whilst the latter draws more concerns on the banking sector and economic policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.