Friction stir welding is a widely used welding process for aluminum alloys because it avoids many of the problems of conventional fusion welding. This process is beneficial especially for lithium containing aluminum alloys in which the reactive property of element Li causes porosity and hot cracking during melting and solidification. In friction stir welding process, each region undergoes different thermo-mechanical cycles and produces a non-homogeneous microstructure. In the present study, the mechanical properties and microstructure of a 2195-T8 aluminum alloy joined with friction stir welding were investigated. The change in microstructure across the welded joint was found to correspond to microhardness measurement. The microstructure was characterized by the presence of severely deformed grains and fine recrystallized grains depending on the region. Tensile tests shows the optimum condition was obtained at the tool rotating speed of 600rpm and the traveling speed range from 180 to 300mm/min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.