Friction stir welding is a widely used welding process for aluminum alloys because it avoids many of the problems of conventional fusion welding. This process is beneficial especially for lithium containing aluminum alloys in which the reactive property of element Li causes porosity and hot cracking during melting and solidification. In friction stir welding process, each region undergoes different thermo-mechanical cycles and produces a non-homogeneous microstructure. In the present study, the mechanical properties and microstructure of a 2195-T8 aluminum alloy joined with friction stir welding were investigated. The change in microstructure across the welded joint was found to correspond to microhardness measurement. The microstructure was characterized by the presence of severely deformed grains and fine recrystallized grains depending on the region. Tensile tests shows the optimum condition was obtained at the tool rotating speed of 600rpm and the traveling speed range from 180 to 300mm/min.
It is well known that the addition of Li to aluminum alloys offers an attractive combination of low density and high modulus, which are useful for lightweight structures of aerospace vehicles. However, microstructure of Al-Li alloys are complex, which consist of a number of equilibrium and metastable phases. In addition, Al-Li alloys are weldable but the weldability is not as good as that of other aerospace alloys. This is due to the reactive property of element Li during melting and causes porosity, cracking and low joint efficiency. In friction stir welding (FSW), rotating welding tool generates frictional heat and by keeping the tool rotating and moving speed, the heat from friction causes the plate to soften without melting. Therefore, this solid state welding is adequate to Al-Li alloys. The friction stir welded joint was divided into 9 regions and each microstructure was investigated in detail to present the microstructure evolution and material flows during friction stir welding process. The recrystallized structure is observed in nugget zone and the evidence of initiation of dynamic recrystallization is found around the boundary between thermo-mechanically affected zone (TMAZ) and nugget region. This paper describes the results of a study to investigate the microstructure change of Al-Cu-Li alloy during the friction stir welding process.
This paper gives an overview of current work in materials and manufacturing technology for aerospace application. Finding the best material to use for a particular application is not simple and it depends on many factors including mission requirements like performance and safety, design requirements, strength to density ratio, operating temperature, and material technology prospects like current state of affordable materials/processes technologies. Materials with high specific strength have long been popular with the aerospace industry, as aerospace vehicle made from such materials provide the required strength with less weight, thereby increasing payload and reducing operating cost. Typical examples are polymer matrix composite and aluminum-lithium alloys for aerospace structures. In liquid rocket propulsion systems, improved high-temperature capability offers the greatest performance payoff, with improved mechanical strength and lower weight also being important. For spacecraft, materials with improved resistance to radiation and atomic oxygen are required. Since before a material can be used in an aerospace system, it must be qualified for use, materials qualification procedure is also presented with an example of shared data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.