It is well known that the addition of Li to aluminum alloys offers an attractive combination of low density and high modulus, which are useful for lightweight structures of aerospace vehicles. However, microstructure of Al-Li alloys are complex, which consist of a number of equilibrium and metastable phases. In addition, Al-Li alloys are weldable but the weldability is not as good as that of other aerospace alloys. This is due to the reactive property of element Li during melting and causes porosity, cracking and low joint efficiency. In friction stir welding (FSW), rotating welding tool generates frictional heat and by keeping the tool rotating and moving speed, the heat from friction causes the plate to soften without melting. Therefore, this solid state welding is adequate to Al-Li alloys. The friction stir welded joint was divided into 9 regions and each microstructure was investigated in detail to present the microstructure evolution and material flows during friction stir welding process. The recrystallized structure is observed in nugget zone and the evidence of initiation of dynamic recrystallization is found around the boundary between thermo-mechanically affected zone (TMAZ) and nugget region. This paper describes the results of a study to investigate the microstructure change of Al-Cu-Li alloy during the friction stir welding process.
Aluminum-Lithium alloys have been found to exhibit superior mechanical properties as compared to the conventional aerospace aluminum alloys in terms of high strength, high modulus, low density, good corrosion resistance and fracture toughness at cryogenic temperatures. Even though they do not form low-melting eutectics during fusion welding, there are still problems like porosity, solidification cracking, and loss of lithium. This is why solid state friction stir welding is important in this alloy. It is known that using Al-Cu-Li alloy and friction stir welding to super lightweight external tank for space shuttle, significant weight reduction has been achieved. The objective of this paper is to investigate the effect of friction stir tool rotation speed on mechanical and microstructural properties of Al-Cu-Li alloy. The plates were joined with friction stir welding process using different tool rotation speeds (300-800 rpm) and welding speeds (120-420 mm/min), which are the two prime welding parameters in this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.