Epidemiologic studies suggest a strong genetic component for susceptibility to systemic lupus erythematosus (SLE). To investigate the genetic mechanism of pathogenesis of SLE, we studied the difference in gene expression of peripheral blood cells between 10 SLE patients and 18 healthy controls using oligonucleotide microarray. When gene expression for patients was compared to the mean of normal controls, among the 3002 target genes, 61 genes were identified with greater than a twofold change difference in expression level. Of these genes, 24 were upregulated and 37 downregulated in at least half of the patients. By the Welch's ANOVA/Welch's t-test, all these 61 genes were significantly different (Po0.05) between SLE patients and normal controls. Among these genes with differential expression, IFN-o and Ly6E (TSA-1/Sca-2) may play an important role in the mechanism of SLE pathogenesis. TSA-1 antigens may represent an important alternative pathway for T-cell activation that may be involved in IFN-mediated immunomodulation. Hierarchical clustering showed that patient samples were clearly separated from controls based on their gene expression profile. These results demonstrate that high-density oligonucleotide microarray has the potential to explore the mechanism of pathogenesis of systemic lupus erythematosus.
their potential for applications in bioimaging, therapy, sensing, and catalysis. [4,5] For instance, ultrathin 2D noble metal nanomaterials have attracted increasing attention due to their ultrathin nature and 2D morphology. The ultrathin nature leads to high surface area-to-volume ratio and abundant exposed catalytically-active sites. [6][7][8] The 2D morphology confers a large interfacial area in contact with the substrate compared with either 1D or 3D nanostructures (e.g., nanowire or nanoparticles), which can enhance the interactions between reactants and the surface of catalysts, contributing to high activity. [8] In view of the fascinating attributes and numerous potential applications of ultrathin 2D metal nanomaterials associated with their unique structural features, it is essential to develop feasible facile and reliable synthesis routes. [2] However, the production of ultrathin 2D metal nanomaterials, free of a solid substrate, represents a significant challenge, due to the tendency of metal atoms to form a highly isotropic 3D close-packed crystal lattice. [9] This natural tendency toward 3D growth can be suppressed by the introduction of confinement to induce anisotropic growth. [4] To date, a range of synthesis strategies have been utilized to prohibit the free 2D metal nanomaterials offer exciting prospects in terms of their properties and functions. However, the ambient aqueous synthesis of atomicallythin, 2D metallic nanomaterials represents a significant challenge. Herein, freestanding and atomically-thin gold nanosheets with a thickness of only 0.47 nm (two atomic layers thick) are synthesized via a one-step aqueous approach at 20 °C, using methyl orange as a confining agent. Owing to the high surface-area-to-volume ratio, abundance of unsaturated atoms exposed on the surface and large interfacial areas arising from their ultrathin 2D nature, the as-prepared Au nanosheets demonstrate excellent catalysis performance in the model reaction of 4-nitrophenol reduction, and remarkable peroxidase-mimicking activity, which enables a highly sensitive colorimetric sensing of H 2 O 2 with a detection limit of 0.11 × 10 −6 m. This work represents the first fabrication of freestanding 2D gold with a sub-nanometer thickness, opens up an innovative pathway toward atomically-thin metal nanomaterials that can serve as model systems for inspiring fundamental advances in materials science, and holds potential across a wide region of applications. Sub-Nanometer Thick Gold Nanosheets
An actuator driven by moisture gradients has been developed from a homogeneous graphene oxide film, relying on the in situ formation of a bilayer structure induced by water adsorption. This actuator shows efficient and controllable bending motions, coupled with the capability of lifting objects 8 times heavier than itself.
Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution and clearance. In this study,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.