In this study, a microfluidic-based physiometer capable of measuring the whole blood viscosity, hematocrit, and red blood cell (RBC) deformability on a chip is introduced.
Phosphate-buffered saline (PBS) and Alsever’s solution (AS) are frequently used as media in blood-related studies, while 0.9% normal saline (NS) is frequently used in transfusion medicine. Despite the frequent use, the effects of these solutions on the shape and volume of red blood cells (RBCs) have not been reported. We collected blood samples from five healthy adults and used three-dimensional refractive index tomography to investigate the changes in the morphology of RBCs caused by changes in osmolality and solutes at the single-cell level. After diluting 2 μL of RBCs 200-fold with each solution (PBS, AS, and 0.9% NS), 40 randomly selected RBCs were microscopically observed. RBC shape was measured considering sphericity, which is a dimensionless quantity ranging from 0 (flat) to 1 (spherical). RBCs in plasma or AS showed a biconcave shape with a small sphericity, whereas those in 0.9% NS or PBS showed a spherical shape with a large sphericity. Moreover, we confirmed that sodium chloride alone could not elicit the biconcave shape of RBCs, which could be maintained only in the presence of an osmotic pressure-maintaining substance, such as glucose or mannitol. Although 0.9% NS solution is one of the most commonly used fluids in hematology and transfusion medicine, RBCs in 0.9% NS or PBS are not biconcave. Therefore, as the debate on the use of NS continues, future clinical studies or applications should consider the effect of glucose or mannitol on the shape of RBCs.
Electrical methods are among the primarily studied non-invasive glucose measurement techniques; however, various factors affect the accuracy of the sensors used. Of these, the temperature is a critical factor; hence, the effects of temperature on the electrical properties of blood components are investigated in this study. Furthermore, the changes in the electrical properties of blood according to the glucose level are corrected by considering the effects of temperature on the electrical properties. An impedance sensor is developed and used to measure whole blood impedance in 10 healthy participants at various temperatures and glucose levels. Subsequently, the conductivities of the plasma and cytoplasm were extracted. Changes in the electrical properties of the blood components are then analyzed using linear regression and repeated measures ANOVA. The electrical conductivities of plasma and cytoplasm increased with increasing temperatures (plasma: 0.0397 (slope), 0.7814 (R2), cytoplasm: 0.014 (slope), 0.694 (R2)). At three values of increasing glucose levels (85.4, 158.1, and 271.8 mg/dL), the electrical conductivities of the plasma and cytoplasm decreased. These tendencies are more significant upon temperature corrections (p-values; plasma: 0.001, 0.001, cytoplasm: 0.003, 0.002). The relationships between temperature and electrical conductivity changes can thus be used for temperature corrections in blood glucose measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.