2021) Circular RNA FAT atypical cadherin 1 (circFAT1)/microRNA-525-5p/spindle and kinetochore-associated complex subunit 1 (SKA1) axis regulates oxaliplatin resistance in breast cancer by activating the notch and
Because of the importance of epidermal functions, including stratum corneum hydration and maintenance of permeability barrier homeostasis, in the pathogenesis of a variety of cutaneous and systemic disorders, a wide range of products has been developed to improve epidermal functions. However, the underlying mechanisms whereby certain products, including heparinoid‐containing product, are far little understood. In the present study, we assessed the impact of a heparinoid‐containing product, Hirudoid® cream, on epidermal permeability barrier function and expression levels of a panel of epidermal mRNA related to the formation/maintenance of the permeability barrier in mouse skin. Our results showed that while the baseline levels of transepidermal water rates remained unchanged, treatment with Hirudoid® cream twice daily for 7 days significantly accelerated permeability barrier recovery and increased stratum corneum hydration. In parallel, expression levels of epidermal mRNA for certain differentiation marker‐related proteins, lipid synthetic enzymes, keratinocyte proliferation and antimicrobial peptides also increased significantly. Together, these results provide the underlying mechanisms by which topical Hirudoid® cream improves epidermal permeability barrier and antimicrobial function. Because of its benefits for epidermal functions, heparinoid‐containing product could be more useful in the management of skin conditions, characterized by abnormal permeability barrier and antimicrobial function.
As a major intracellular degradation and recycling machinery, autophagy plays an important role in maintaining cellular homeostasis and remodeling during normal development. Our previous study showed that fluorapatite (FA) crystal-coated electrospun polycaprolactone (PCL) was capable of inducing differentiation and mineralization of human dental pulp stem cells. However, how autophagy changes and whether autophagy plays a vital role during these processes is still unknown. In this study, we seeded STEMPRO human adipose-derived stem cells (ASCs) on both PCL+FA and PCL scaffolds to investigate the osteogenic inductive ability of FA crystals and we observed the autophagy changes of these cells. Scanning electron microscopy and fluorescence microscopy images, along with DNA quantitation, showed that both PCL+FA and PCL scaffolds could sustain ASC growth but only the PCL+FA scaffold could sustain cell mineralization. This was confirmed by alkaline phosphatase activity and Alizarin red and Von Kossa staining results. The autophagy RT Profiler polymerase chain reaction array analysis showed many autophagy-related genes changes during ASC differentiation. Western blot analysis indicated that several autophagy-related proteins fluctuated during the procedure. Among them, the microtubule-associated protein 1 light chain 3 (LC3)-II protein changes of the ASCs grown on the 2- or 3-dimensional environments at 6 h, 12 h, 1 d, 3 d, 7 d, 14 d, and 21 d reached a peak value at day 7 during osteogenesis. At earlier stages (from day 0 to day 3), the addition of autophagy inhibitors (3-mathyladenine, bafilomycin A1, and NHCl) attenuated the expression of osteogenic related markers (osteopontin, alkaline phosphatase activity, Alizarin red, and Von Kossa) compared with the control group. All data indicated that autophagy played an important role in ASC differentiation on the PCL+FA scaffold. Inhibition of autophagy before day 3 strongly inhibited osteogenic differentiation and mineralization of ASCs in the 3-dimensional model. This observation further elucidates the mechanism of autophagy in mesenchymal stem cell osteogenic differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.