We present a method providing synchronized measurements using the two techniques: quartz crystal microbalance with dissipation (QCM-D) monitoring and localized surface plasmon resonance (LSPR). This was achieved by letting a thin gold film perforated with short-ranged ordered plasmon-active nanoholes act as one of the electrodes of a QCM-D crystal. This enabled transmission-mode optical spectroscopy to be used to temporally resolve colorimetric changes of the LSPR active substrate induced upon biomolecular binding events. The LSPR response could thus be compared with simultaneously obtained changes in resonance frequency, Deltaf, and energy dissipation, DeltaD, of the QCM-D device. Since the LSPR technique is preferentially sensitive to changes within the voids of the nanoholes, while the QCM-D technique is preferentially sensitive to reactions on the planar region between the holes, a surface chemistry providing the same binding kinetics on both gold and silica was used. This was achieved by coating the substrate with poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), which was shown to bind in the same manner on silica and gold modified with a carboxyl-terminated thiol. In this way, the combined setup provided new information about structural changes upon PLL-g-PEG adsorption. We also demonstrate subsequent binding of NeutrAvidin and an immunoreaction utilizing biotin-modified IgG. The combined information from the synchronized measurements was also used in a new way to estimate the sensing volume of the LSPR sensor.
We recently reported on the strong interactions of zoospores of the green alga, Ulva linza with an arginine-rich oligopeptide self-assembled monolayer (SAM) [Biofouling 2008, 24, 303-312], where the arginine-rich peptide induced not only high spore settlement, but also a form of abnormal settlement, or "pseudo-settlement", whereby a proportion of spores do not go through the normal process of surface exploration, adhesive exocytosis, and loss of flagella. Further, it was demonstrated that both the total number of settled spores and the fraction of pseudosettled spores were related to the surface density of the arginine-rich peptide. Here we present a further investigation of the interactions of zoospores of Ulva with a set of oligomeric, de novo designed, arginine-rich peptides, specifically aimed to test the effect of peptide primary structure on the interaction. Via variations in the peptide length and by permutations in the amino acid sequences, we gain further insight into the spore-surface interactions. The interpretation of the biological assays is supported by physicochemical characterization of the SAMs using infrared spectroscopy, ellipsometry, and contact angle measurements. Results confirm the importance of arginine residues for the anomalous pseudosettlement, and we found that settlement is modulated by variations in both the total length and peptide primary structure. To elucidate the causes of the anomalous settlement and the possible relation to peptide-membrane interactions, we also compared the settlement of the "naked" zoospores of Ulva (which present a lipoprotein membrane to the exterior without a discrete polysaccharide cell wall), with the settlement of diatoms (unicellular algae that are surrounded by a silica cell wall), onto the peptide SAMs. Cationic SAMs do not notably affect settlement (attachment), adhesion strength, or viability of diatom cells, suggesting that the effect of the peptides on zoospores of Ulva is mediated via specific peptide-membrane interactions.
This paper reports on the structural characteristics of microcontact printed oligo(ethylene glycol)-terminated alkanethiol layers, HS(CH2)15CONH-(CH2CH2O)6-H (hereafter EG6), on gold. Microwetting, contact angle goniometry, imaging null ellipsometry, and infrared reflection-absorption spectroscopy (IRAS) are used to characterize the printed EG6 layers, and the quality of these layers in terms of layer thickness and the crystallinity of the alkyl and ethylene glycol portions is compared with data obtained from analogous layers prepared by solution self-assembly. The outcome of the printing process is critically dependent on the experimental parameters used to prepare the patterns. It is found that high quality layers, consisting of densely packed all-trans alkyl chains terminated with relatively helical hexa(ethylene glycol) tails, are formed by inking the poly(dimethylsiloxane) (PDMS) stamp with a 1 mM EG6 solution and contacting it with gold for 15 min. The homogeneity of printed layers is not as good as the homogeneity of those prepared from solution under similar conditions, most likely because of simultaneous transfer of low molecular weight residues from the PDMS stamp. These residues, however, can be easily removed upon ultrasonication in ethanol without affecting the quality of the printed layer. Further on, the microscopic square-shaped bare gold patterns formed after microcontact printing (muCP) are subsequently filled with 16-hexadecanoic acid (hereafter THA) or HS(CH2)15CONH-(CH2CH2O)6-COOH (hereafter EG6COOH) to provide a microarray platform for further covalent attachment of biomolecules. Well-defined structures in terms of wettability contrast, sharpness, and height differences between the printed and back-filled areas are confirmed by imaging null ellipsometry and microscopic wetting.
The authors present in this paper how the extended Mie theory can be used to translate not only end-point data but also temporal variations of extinction peak-position changes, ⌬ peak ͑t͒, into absolute mass uptake, ⌫͑t͒, upon biomacromolecule binding to localized surface plasmon resonance ͑SPR͒ active nanoparticles ͑NPs͒. The theoretical analysis is applied on a novel sensor template composed of a three-layer surface architecture based on ͑i͒ a self-assembled monolayer of HS͑CH 2 ͒ 15 COOH, ͑ii͒ a 1:1 mixture of biotinylated and pure poly͑L-lysine͒-graft-poly͑ethylene glycol͒ ͑PLL-g-PEG͒, and ͑iii͒ NeutrAvidin. Assisted by independent estimations of the thickness of the three-layer architecture using quartz crystal microbalance with dissipation ͑QCM-D͒ monitoring, excellent agreement with parallel mass-uptake estimations using planar SPR is obtained. Furthermore, unspecific binding of serum to PLL-g-PEG was shown to be below the detection limit, making the surface architecture ideally suited for label-free detection of immunoreactions. To ensure that the immunocomplex formation occurred within the limited sensing depth ͑ϳ10 nm͒ of the NPs, a compact model system composed of a biotinylated human recombinant single-chain antibody fragment ͑ ϳ 2 nm͒ directed against cholera toxin was selected. By tracking changes in the centroid ͑center of mass͒ of the extinction peak, rather than the actual peak position, signal-to-noise levels and long-term stability upon cholera toxin detection are demonstrated to be competitive with results obtained using conventional SPR and state-of-the-art QCM-D data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.