Due to complicated transfer paths and strong background noise interference, the fault pattern information deeply hides in common features of the vibration signal at the engine surface. In this study, the refined composite multiscale fuzzy entropy (RCMFE) used to measure the irregularity and self-similarity of time series is proposed to quantify the feature of various fault patterns. Followed by RCMFE, the features dug out are recognized by a parameter-adaptive support vector machine based on the firefly algorithm (FASVM). After putting forward the diagnosing schematics, the RCMFE-FASVM is applied to a fault diagnosis case of a diesel engine on a test rig. A comparative analysis of the four methods to extract features and the four methods to recognize fault patterns are conducted. Results indicate the proposed method has superior recognition performance and can effectively identify the working states of the diesel engine, contrasting the existing methods. Under the small samples and features task of identifying the working states of a diesel engine, the recognition rate of the proposed method with more stability can reach 98.2%, which is larger than other methods. Given the superior performance of the proposed method, the number of input features and training samples should vary from 8 to 20 and from 35 to 50.
In order to reduce pollutants of the emission from diesel vehicles, complex after-treatment technologies have been proposed, which make the fault detection of diesel engines become increasingly difficult. Thus, this paper proposes a canonical correlation analysis detection method based on fault-relevant variables selected by an elitist genetic algorithm to realize high-dimensional data-driven faults detection of diesel engines. The method proposed establishes a fault detection model by the actual operation data to overcome the limitations of the traditional methods, merely based on benchmark. Moreover, the canonical correlation analysis is used to extract the strong correlation between variables, which constructs the residual vector to realize the fault detection of the diesel engine air and after-treatment system. In particular, the elitist genetic algorithm is used to optimize the fault-relevant variables to reduce detection redundancy, eliminate additional noise interference, and improve the detection rate of the specific fault. The experiments are carried out by implementing the practical state data of a diesel engine, which show the feasibility and efficiency of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.