Upconversion (UC) process in lanthanide-doped nanomaterials has attracted great research interest for its extensive biological applications in vitro and in vivo, benefiting from the high tissue penetration depth of near-infrared excitation light and low autofluorescence background. However, the 980 nm laser, typically used to trigger the Yb(3+)-sensitized UC process, is strongly absorbed by water in biological structures and could cause severe overheating effect. In this article, we report the extension of the UC excitation spectrum to shorter wavelengths, where water has lower absorption. This is realized by further introducing Nd(3+) as the sensitizer and by building a core/shell structure to ensure successive Nd(3+) → Yb(3+) → activator energy transfer. The efficacy of this Nd(3+)-sensitized UC process is demonstrated in in vivo imaging, and the results confirmed that the laser-induced local overheating effect is greatly minimized.
Rare earth (RE) materials, which are excited in the ultraviolet and emit in the visible light spectrum, are widely used as phosphors for lamps and displays. In the 1960's, researchers reported an abnormal emission phenomenon where photons emitted from a RE element carried more energy than those absorbed, owing to the sequential energy transfer between two RE ions--Yb(3+)-sensitized Er(3+) or Tm(3+)--in the solid state. After further study, researchers named this abnormal emission phenomenon upconversion (UC) emission. More recent approaches take advantage of solution-based synthesis, which allows creation of homogenous RE nanoparticles (NPs) with controlled size and structure that are capable of UC emission. Such nanoparticles are useful for many applications, especially in biology. For these applications, researchers seek small NPs with high upconversion emission intensity. These UCNPs have the potential to have multicolor and tunable emissions via various activators. A vast potential for future development remains by developing molecular antennas and energy transfer within RE ions. We expect UCNPs with optimized spectra behavior to meet the increasing demand of potential applications in bioimaging, biological detection, and light conversion. This Account focuses on efforts to control the size and modulate the spectra of UCNPs. We first review efforts in size control. One method is careful control of the synthesis conditions to manipulate particle nucleation and growth, but more recently researchers have learned that the doping conditions can affect the size of UCNPs. In addition, constructing homogeneous core/shell structures can control nanoparticle size by adjusting the shell thickness. After reviewing size control, we consider how diverse applications impose different requirements on excitation and/or emission photons and review recent developments on tuning of UC spectral profiles, especially the extension of excitation/emission wavelengths and the adjustment and purification of emission colors. We describe strategies that employ various dopants and others that build rationally designed nanostructures and nanocomposites to meet these goals. As the understanding of the energy transfer in the UC process has improved, core/shell structures have been proved useful for simultaneous tuning of excitation and emission wavelengths. Finally, we present a number of typical examples to highlight the upconverted emission in various applications, including imaging, detection, and sensing. We believe that with deeper understanding of emission phenomena and the ability to tune spectral profiles, UCNPs could play an important role in light conversion studies and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.