Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disorder caused by mutations in the dystrophin gene, with an incidence of 1 in 3500 in new male births. Mdx mice are widely used as an animal model for DMD. However, these mice do not faithfully recapitulate DMD patients in many aspects, rendering the preclinical findings in this model questionable. Although larger animal models of DMD, such as dogs and pigs, have been generated, usage of these animals is expensive and only limited to several facilities in the world. Here, we report the generation of a rabbit model of DMD by co-injection of Cas9 mRNA and sgRNA targeting exon 51 into rabbit zygotes. The DMD knockout (KO) rabbits exhibit the typical phenotypes of DMD, including severely impaired physical activity, elevated serum creatine kinase levels, and progressive muscle necrosis and fibrosis. Moreover, clear pathology was also observed in the diaphragm and heart at 5 months of age, similar to DMD patients. Echocardiography recording showed that the DMD KO rabbits had chamber dilation with decreased ejection fraction and fraction shortening. In conclusion, this novel rabbit DMD model generated with the CRISPR/Cas9 system mimics the histopathological and functional defects in DMD patients, and could be valuable for preclinical studies.This article has an associated First Person interview with the first author of the paper.
BACKGROUND AND PURPOSEBoldine is a potent natural antioxidant present in the leaves and bark of the Chilean boldo tree. Here we assessed the protective effects of boldine on endothelium in a range of models of diabetes, ex vivo and in vitro. EXPERIMENTAL APPROACHVascular reactivity was studied in mouse aortas from db/db diabetic and normal mice. Reactive oxygen species (ROS) production, angiotensin AT1 receptor localization and protein expression of oxidative stress markers in the vascular wall were evaluated by dihydroethidium fluorescence, lucigenin enhanced-chemiluminescence, immunohistochemistry and Western blot respectively. Primary cultures of mouse aortic endothelial cells, exposed to high concentrations of glucose (30 mmol L −1 ) were also used. KEY RESULTSOral treatment (20 mg kg , 12 h) enhanced endotheliumdependent aortic relaxations of db/db mice. Boldine reversed impaired relaxations induced by high glucose or angiotensin II (Ang II) in non-diabetic mouse aortas while it reduced the overproduction of ROS and increased phosphorylation of eNOS in db/db mouse aortas. Elevated expression of oxidative stress markers (bone morphogenic protein 4 (BMP4), nitrotyrosine and AT1 receptors) were reduced in boldine-treated db/db mouse aortas. Ang II-stimulated BMP4 expression was inhibited by boldine, tempol, noggin or losartan. Boldine inhibited high glucose-stimulated ROS production and restored the decreased phosphorylation of eNOS in mouse aortic endothelial cells in culture. CONCLUSIONS AND IMPLICATIONSBoldine reduced oxidative stress and improved endothelium-dependent relaxation in aortas of diabetic mice largely through inhibiting ROS overproduction associated with Ang II-mediated BMP4-dependent mechanisms. AbbreviationsAng II, angiotensin II; BMP4, bone morphogenic protein 4; MAEC, mouse aortic endothelial cells BJP British Journal of Pharmacology
Previous studies from others and us have demonstrated that CRISPR genome editing could offer a promising therapeutic strategy to restore dystrophin expression and function in the skeletal muscle and heart of Duchenne muscular dystrophy (DMD) mouse models. However, the long-term efficacy and safety of CRISPR genome-editing therapy for DMD has not been well established. We packaged both SaCas9 and guide RNA (gRNA) together into one AAVrh.74 vector, injected two such vectors (targeting intron 20 and intron 23, respectively) into mdx pups at day 3 and evaluated the mice at 19 months. We found that AAVrh.74-mediated life-long CRISPR genome editing in mdx mice restored dystrophin expression and improved cardiac function without inducing serious adverse effects. PCR analysis and targeted deep sequencing showed that the DSBs were mainly repaired by the precise ligation of the two cut sites. Serological and histological examination of major vital organs did not reveal any signs of tumor development or other deleterious defects arising from CRISPR genome editing. These results support that in vivo CRISPR genome editing could be developed as a safe therapeutic treatment for DMD and potentially other diseases.
Abstract:Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, are a rich source of antioxidants. Boldine [(S)-2,9-dihydroxy-1,10-dimethoxy-aporphine], an aporphine alkaloid, is a potent antioxidant found in the leaves and bark of the Chilean boldo tree. Boldine has been extensively reported as a potent “natural” antioxidant and possesses several health-promoting properties like anti-inflammatory, antitumor promoting, antidiabetic, and cytoprotective. Boldine exhibited significant endothelial protective effect in animal models of hypertension and diabetes mellitus. In isolated thoracic aorta of spontaneously hypertensive rats, streptozotocin-induced diabetic rats, and db/db mice, repeated treatment of boldine significantly improved the attenuated acetylcholine-induced endothelium-dependent relaxations. The endothelial protective role of boldine correlated with increased nitric oxide levels and reduction of vascular reactive oxygen species via inhibition of the nicotinamide adenine dinucleotide phosphate oxidase subunits, p47phox and nicotinamide adenine dinucleotide phosphate oxidase 2, and angiotensin II–induced bone morphogenetic protein-4 oxidative stress cascade with downregulation of angiotensin II type 1 receptor and bone morphogenetic protein-4 expression. Taken together, it seems that boldine may exert protective effects on the endothelium via several mechanisms, including protecting nitric oxide from degradation by reactive oxygen species as in oxidative stress–related diseases. The present review supports a complimentary therapeutic role of the phytochemical, boldine, against endothelial dysfunctions associated with hypertension and diabetes mellitus by interfering with the oxidative stress–mediated signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.