The CRISPR RNA-guided Cas9 nuclease gene-targeting system has been extensively used to edit the genome of several organisms. However, most mutations reported to date have been are indels, resulting in multiple mutations and numerous alleles in targeted genes. In the present study, a large deletion of 105 kb in the TYR (tyrosinase) gene was generated in rabbit via a dual sgRNA-directed CRISPR/Cas9 system. The typical symptoms of albinism accompanied significantly decreased expression of TYR in the TYR knockout rabbits. Furthermore, the same genotype and albinism phenotype were found in the F1 generation, suggesting that large-fragment deletions can be efficiently transmitted to the germline and stably inherited in offspring. Taken together, our data demonstrate that mono and biallelic large deletions can be achieved using the dual sgRNA-directed CRISPR/Cas9 system. This system produces no mosaic mutations or off-target effects, making it an efficient tool for large-fragment deletions in rabbit and other organisms.
Previous studies have revealed the critical roles of the N6-methyladenosine (m6A) modification of long non-coding RNAs (lncRNAs) in cancers, but the relationship between the oncogenic role of the lncRNA THOR (a representative of cancer/testis lncRNAs) and m6A modification remains unclear. Here, we show that the internal m6A modification of the lncRNA THOR via an m6A-reader-dependent modality regulates the proliferation of cancer cells. Our findings demonstrated that the loss of the lncRNA THOR inhibits the proliferation, migration, and invasion of cancer cells in vitro and in vivo. In addition, m6A is highly enriched on lncRNA THOR transcripts, which contain GA (m6A) CA, GG (m6A) CU, and UG (m6A) CU sequence motifs. RIP-qRT-PCR and RNA pull-down assay results revealed that the specific m6A readers YTHDF1 and YTHDF2 can read the m6A motifs and regulate the stability of the lncRNA THOR (stabilization and decay). These m6A-dependent RNA-protein interactions can maintain the oncogenic role of the lncRNA THOR. Collectively, these findings highlight the critical role of the m6A modification in oncogenic lncRNA THOR and reveal a novel long non-coding RNA regulatory mechanism, providing a new way to explore RNA epigenetic regulatory patterns in the future. Recently, the new field of "RNA epigenetics" has been booming 14,15 , and N6-methyladenosine (m6A) has been identified as a post-transcriptional regulatory mark in multiple RNA species, including messenger RNAs (mRNAs) 1,2,16 , transfer RNAs (tRNAs) 3,4,17-20 , ribosomal RNAs (rRNAs) 21 , small nuclear RNA 22 , small non-coding RNAs (sncRNAs) 23 , and lncRNAs 16,24. It has been reported that the m6A RNA modification is conferred by methyltransferases (writers), such as methyltransferaselike 3 (METTL3), forming the catalytic core of the m6A methyltransferase complex 25-28. In addition, the biological function of m6A is mediated through the recognition of the m6A site by m6A "readers" 1,29,30 , such as the YT521-B homology (YTH) family, including YTH domain
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disorder caused by mutations in the dystrophin gene, with an incidence of 1 in 3500 in new male births. Mdx mice are widely used as an animal model for DMD. However, these mice do not faithfully recapitulate DMD patients in many aspects, rendering the preclinical findings in this model questionable. Although larger animal models of DMD, such as dogs and pigs, have been generated, usage of these animals is expensive and only limited to several facilities in the world. Here, we report the generation of a rabbit model of DMD by co-injection of Cas9 mRNA and sgRNA targeting exon 51 into rabbit zygotes. The DMD knockout (KO) rabbits exhibit the typical phenotypes of DMD, including severely impaired physical activity, elevated serum creatine kinase levels, and progressive muscle necrosis and fibrosis. Moreover, clear pathology was also observed in the diaphragm and heart at 5 months of age, similar to DMD patients. Echocardiography recording showed that the DMD KO rabbits had chamber dilation with decreased ejection fraction and fraction shortening. In conclusion, this novel rabbit DMD model generated with the CRISPR/Cas9 system mimics the histopathological and functional defects in DMD patients, and could be valuable for preclinical studies.This article has an associated First Person interview with the first author of the paper.
X-linked hypophosphatemia (XLH) is the most common cause of inheritable rickets, with an incidence of 1/20 000 in humans. Inactivation or mutation of the gene PHEX, a phosphate-regulating endopeptidase, leads to hypophosphatemia and defective bone mineralization in XLH patients. Presently, there is no adequate animal model for safety assessments of physiotherapies and drug screening for XLH rickets. In this study, an XLH model was generated via PHEX gene knockout (KO) through coinjection of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9)/sgRNA mRNA into rabbit zygotes. The typical phenotypes of growth retardation, hypophosphatemia, elevated serum FGF23 and bone mineralization were observed in the PHEX KO rabbits but not in normal controls. In summary, for the first time, we have successfully obtained PHEX KO rabbits and recapitulated human XLH using the CRISPR/Cas9 system. This novel XLH rabbit model could be utilized as a drug screening model for XLH prevention and preclinical therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.