In this study, the batch adsorption of toxic Cu +2 , Cr +3 , Cd +2 and Pb +2 ions using marine macroalga Ulva lactuca (AP) and its activated carbon (AAC) were examined. The adsorption mechanism of heavy metal ions on AP and AAC was studied using various analytical techniques. The effect of several parameters such as contact time, algal dose, effect of pH, and initial concentration of metal ions on the adsorption process was estimated. The optimum adsorption was found to occur at pH 5.0, contact time 60 min, adsorbent dose 0.8 g/L, and initial concentration 60 mg/L. The maximum removal efficiency values of AP and AAC for heavy metal ions were 64.5 and 84.7 mg/g for Cu +2 , 62.5 and 84.6 mg/g for Cd +2 , 60.9 and 82 mg/g for Cr +3 , and 68.9 and 83.3 mg/g for Pb +2. This work confirms the potential use of green macroalga U. lactuca and its activated carbon for the removal of heavy metals from contaminated water.
Spirulina (SP) (Arthrospira platensis; previously Spirulina platensis) is a filamentous blue-green microalga (cyanobacterium) with potent dietary phytoantioxidant and anticancerous properties. We investigated the chemopreventive effect of SP against 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat breast carcinogenesis, and further studied its underlying mechanisms of action in vitro. Remarkably, SP cleared DMBA-induced rat mammary tumors, which was clearly confirmed by morphological and histological methods. SP supplementation reduced the incidence of breast tumors from 87% to 13%. At the molecular level, immunohistochemical analysis revealed that SP supplementation reduced expression of both Ki-67 and estrogen α. More interestingly, molecular analysis in the in vitro experiments indicated that SP treatment inhibited cell proliferation by 24 hours, which was accompanied by increased p53 expression, followed by increased expression of its downstream target gene, Cdkn1a (alias p21 or p21(Waf1/Cip1)). In addition, SP increased Bax and decreased Bcl-2 expression, indicating induction of apoptosis by 48 hours after SP treatment. To our knowledge, this is the first report of in vivo chemopreventive effect of SP against DMBA-induced breast carcinogenesis in rat, supporting its potential use in chemoprevention of cancer.
Microcystins (MCs) are the most potent toxins that can be produced by cyanobacteria in drinking water supplies. This study investigated the abundance of toxin-producing algae in 11 drinking water treatment plants (DWTPs). A total of 26 different algal taxa were identified in treated water, from which 12% were blue green, 29% were green, and 59% were diatoms. MC levels maintained strong positive correlations with number of cyanophycean cells in raw and treated water of different DWTPs. Furthermore, the efficiency of various algal-based adsorbent columns used for the removal of these toxins was evaluated. The MCs was adsorbed in the following order: mixed algal-activated carbon (AAC) ≥ individual AAC > mixed algal powder > individual algal powder. The results showed that the AAC had the highest efficient columns capable of removing 100% dissolved MCs from drinking water samples, thereby offering an economically feasible technology for efficient removal and recovery of MCs in DWTPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.