QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiberproducing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks. MOST naturally occurring genetic variation in populations reflects polymorphic alleles that individually have relatively small effects but collectively result in continuous variation among members of the population. Through genetic mapping, the number and location of loci associated with complex trait variation, i.e., quantitative trait loci or QTL, can be estimated and used to infer the genetic basis of traits that differ between varieties and/or species (Paterson et al. 1988). DNA markers linked to QTL can also be used as diagnostic tools in the selection of desirable genotypes (markerassisted selection) and as a starting point for cloning of QTL. For these reasons, vast numbers of QTL representing a myriad of traits have been mapped in agronomically important crops, and also in botanical models and animals. A handful of genes underlying QTL have been cloned (e.g., Frary et al. 2000) based largely on fine mapping (Paterson et al. 1990).A recurring complication in the use of QTL data is that different parental combinations and/or experiments conducted in different environments often result in identification of partly or wholly nonoverlapping sets of QTL. The majority of such differences in the QTL landscape are presumed to be due to environment sensitivity of genes. The use of stringent statistical thresholds to infer QTL while controlling experiment-wise error rates (Lander and Botstein 1989;Churchill and Doerge 1994) implies that only a small fraction of these nonoverlapping QTL can be attributed to falsepositive results. Small QTL wit...
Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2-16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe.
Cotton is unusual among major crops in that large acreages are grown under both irrigated and rainfed conditions, making genotype x environment interactions of even greater importance than usual in designing crop-improvement strategies. We describe the impact of well-watered versus water-limited growth conditions on the genetic control of fiber quality, a complex suite of traits that collectively determine the utility of cotton. Fiber length, length uniformity, elongation, strength, fineness, and color (yellowness) were influenced by 6, 7, 9, 21, 25 and 11 QTLs (respectively) that could be detected in one or more treatments. The genetic control of cotton fiber quality was markedly affected both by general differences between growing seasons ("years") and by specific differences in water management regimes. Seventeen QTLs were detected only in the water-limited treatment while only two were specific to the well-watered treatment, suggesting that improvement of fiber quality under water stress may be even more complicated than improvement of this already complex trait under well-watered conditions. In crops such as cotton with widespread use of both irrigated and rainfed production systems, the need to manipulate larger numbers of genes to confer adequate quality under both sets of conditions will reduce the expected rate of genetic gain. These difficulties may be partly ameliorated by efficiencies gained through identification and use of diagnostic DNA markers, including those identified herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.