Background: Propolis and honey are natural bee products with wide range of biological and medicinal properties. The study investigated antimicrobial activity of ethyl alcohol extraction of propolis collected from Saudi Arabia (EEPS) and from Egypt (EEPE), and their synergistic effect when used with honey. Single and polymicrobial cultures of antibiotic resistant human pathogens were tested.Material and methods; Staphylococcus aureus (S. aureus),), Escherichia coli (E. coli) and Candida albicans (C.albicans) were cultured in 10-100% (v/v) honey diluted in broth, or 0.08-1.0% (weight/volume) EEPS and EEPE diluted in broth. Four types of polymicrobial cultures were prepared by culturing the isolates with each other in broth (control) and broth containing various concentrations of honey or propolis. Microbial growth was assessed on solid plate media after 24 h incubation.Results; EEPS and EEPE inhibited antibiotic resistant E.coli, and S.aureus, and C.albicans in single and polymicrobial cultures. S.aureus became more susceptible when it was cultured with E.coli or C.albicans or when all cultured together. C.albicans became more susceptible when it was cultured with S.aureus or with E.coli and S. aureus together. The presence of ethyl alcohol or honey potentiated antimicrobial effect of propolis toward entire microbes tested in single or polymicrobial cultures. EEPS had lower MIC toward E.coli and C.albicans than EEPE. When propolis was mixed with honey, EEPS showed lower MIC than EEPE. In addition, honey showed lower MIC toward entire microbes when mixed with EEPS than when it was mixed with EEPE.Conclusion; 1) propolis prevents the growth of the microorganisms in single and mixed microbial cultures, and has synergistic effect when used with honey or ethyl alcohol, 2) the antimicrobial property of propolis varies with geographical origin, and 3) this study will pave the way to isolate active ingredients from honey and propolis to be further tested individually or in combination against human resistant infections.
The aim of the study was to detect the infection level of honey bees with and/or using microscopic and molecular analysis from indigenous honeybee race of eight Saudi Arabian geographical regions. A detailed survey was conducted and fifty apiaries were chosen at random from these locations. Infection level was determined both by microscope and Multiplex-PCR and data were analyzed using bioinformatics tools and phylogenetic analysis. Result showed that was the only species infecting indigenous honeybee colonies in Saudi Arabia. As determined by microscope, spores were found to be in 20.59% of total samples colonies, while 58% of the samples evaluated by PCR were found to be positive for , with the highest prevalence in Al-Bahah, a tropical wet and dry climatic region, whereas low prevalence was found in the regions with hot arid climate. Honeybees from all eight locations surveyed were positive for. This is the first report about the detection, contamination level and distribution pattern in Saudi Arabia.
Diploid wheat Triticum monococcum L. is a model plant for wheat functional genomics. Chlorophyll-deficient mutant (clm1) was identified during manual screening of the ethylmethane sulphonate (EMS)-treated M 2 progenies of T. monococcum accession pau14087 in the field. The clm1 mutant, due to significantly decreased chlorophyll content compared with the wild-type (WT), exhibited pale yellow leaves which slowly recovered to green before flowering. The clm1 mutant showed early flowering, reduced number of tillers, trichome length and density, and different shape as compared with the WT. At the same time, clm1 mutant culm had more chlorophyll-containing parenchymatous tissues compared to WT, presumably to absorb more sunlight for photosynthesis. Genetic analysis indicated that the clm1 mutation was monogenic recessive. The clm1 mutant was mapped between Xgwm473 and Xwmc96 SSR markers, with genetic distances of 2.1 and 2.6 cM, respectively, on the 7A m L chromosome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.