We describe a graph-convolutional neural network (GCN) model whose reaction prediction capable as potent as the transformer model on sufficient data, and adopt the Baeyer-Villiger oxidation to explore their performance...
While state-of-art models can predict reactions through the transfer learning of thousands of samples with the same reaction types as those of the reactions to predict, how to prepare such...
Deep learning methods, such as reaction prediction and retrosynthesis analysis, have demonstrated their significance in the chemical field. However, the de novo generation of novel reactions using artificial intelligence technology requires further exploration. Inspired by molecular generation, we proposed a novel task of reaction generation. Herein, Heck reactions were applied to train the transformer model, a state-of-art natural language process model, to generate 4717 reactions after sampling and processing. Then, 2253 novel Heck reactions were confirmed by organizing chemists to judge the generated reactions. More importantly, further organic synthesis experiments were performed to verify the accuracy and feasibility of representative reactions. The total process, from Heck reaction generation to experimental verification, required only 15 days, demonstrating that our model has well-learned reaction rules in-depth and can contribute to novel reaction discovery and chemical space exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.