Copper is an essential micronutrient, but toxic in excess. Sulfolobus solfataricus cells have the ability to adapt to fluctuations of copper levels in their external environment. To better understand the molecular mechanism behind the organismal response to copper, the expression of the cluster of genes copRTA, which encodes the copper-responsive transcriptional regulator CopR, the copper-binding protein CopT, and CopA, has been investigated and the whole operon has been shown to be cotranscribed at low levels from the copR promoter under all conditions, whereas increased transcription from the copTA promoter occurs in the presence of excess copper. Furthermore, the expression of the copper-transporting ATPase CopA over a 27-hour interval has been monitored by quantitative real-time RT-PCR and compared to the pattern of cellular copper accumulation, as determined in a parallel analysis by Inductively Coupled Plasma Optical Emission spectrometry (ICP-OES). The results provide the basis for a model of the molecular mechanisms of copper homeostasis in Sulfolobus, which relies on copper efflux and sequestration.
In trace amounts, copper is essential for the function of key enzymes in prokaryotes and eukaryotes. Organisms have developed sophisticated mechanisms to control the cytosolic level of the metal, manage its toxicity and survive in copper-rich environments. Here we show that the Sulfolobus CopR represents a novel class of copper-responsive regulators, unique to the archaeal domain. Furthermore, by disruption of the ORF Sso2652 (copR) of the Sulfolobus solfataricus genome, we demonstrate that the gene encodes a transcriptional activator of the copper-transporting ATPase CopA gene and co-transcribed copT, encoding a putative copper-binding protein. Disruption resulted in a loss of copper tolerance in two copR-knockout mutants, while metals such as zinc, cadmium and chromium did not affect their growth. Copper sensitivity in the mutant was linked to insufficient levels of expression of CopA and CopT. The findings were further supported by time-course inductively coupled plasma optical emission spectrometry measurements, whereby continued accumulation of copper in the S. solfataricus mutant was observed. In contrast, copper accumulation in the wild-type stabilized after reaching approximately 6 pg (µg total protein)–1. Complementation of the disrupted mutant with a wild-type copy of the copR gene restored the wild-type phenotype with respect to the physiological and transcriptional response to copper. These observations, taken together, lead us to propose that CopR is an activator of copT and copA transcription, and the member of a novel class of copper-responsive regulators.
The RB and E2F proteins play important roles in the regulation of cell division, cell death, and development by controlling the expression of genes involved in these processes. The mechanisms of repression by the retinoblastoma protein (pRB) have been extensively studied at cell cycle-regulated promoters. However, little is known about developmentally regulated E2F/RB genes. Here, we have taken advantage of the simplicity of the E2F/RB pathway in flies to inspect the regulation of differentiation-specific target genes. These genes are repressed by dE2F2/RBF and a recently identified RB-containing complex, dREAM/MMB, in a cell type-and cell cycle-independent manner. Our studies indicate that the mechanism of repression differs from that of cell cycle-regulated genes. We find that two different activities are involved in their regulation and that in proliferating cells, both are required to maintain repression. First, dE2F2/RBF and dREAM/MMB employ histone deacetylase (HDAC) activities at promoter regions. Remarkably, we have also uncovered an unconventional mechanism of repression by the Polycomb group (PcG) protein Enhancer of zeste [E(Z)], which is involved in silencing of these genes through the dimethylation of histone H3 Lys27 at nucleosomes located downstream of the transcription start sites (TSS).The retinoblastoma protein (pRB) is a critical regulator of cell division, cell death, and differentiation in metazoans, and its activity is altered in most human tumors (9,22,47,48,60). The best understood property of pRB is its ability to modulate the action of the E2F family of transcription factors and to regulate cell cycle progression (11,13,56). pRB and the related proteins p107 and p130, collectively referred to as "pocket proteins," or RB family proteins (RB), bind to the heterodimeric E2F/DP factors and provide a module of transcriptional regulation that couples the expression of many genes with cell cycle progression. In quiescent cells, E2F and pocket proteins form repressive complexes that prevent the transcription of genes required for S-phase entry. This repression is then relieved at the G 1 -to-S transition by the activity of cyclin-dependent kinases (Cdk). At the promoters of cell cycleregulated genes, repressive E2F/RB complexes are replaced by activating E2Fs, and this allows for the coordinated expression of many genes required for cell division (13, 56).The biological activities of pRB extend beyond cell cycle regulation. Work in the past several years has greatly expanded the spectrum of genes regulated by E2F and RB. In addition to genes required for DNA replication and cell cycle progression, these now include a number of genes involved in sex determination, differentiation, and development (6,12,25,36,40,50,61,62,64). While pRB-dependent control of differentiation has been implicated in tumor suppression, the regulation of differentiation by pRB remains poorly understood (7,27,31).Despite extensive studies of the mechanism of repression by pRB at cell cycle target genes, little is known a...
We describe the development of an immunoglobulin M-specific enzyme-linked immunosorbent assay for the detection of an early antibody response to Bartonella henselae, the causative agent of cat scratch disease, bacillary angiomatosis, and endocarditis. This assay discriminates between B. henselae-positive and -negative patient samples with sensitivity and specificity values of 100% and 97.1%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.