Thin film microextraction (TFME) is an analytical tool that has been proven to be suitable for integrated sampling and sample preparation of a wide variety of routine and on-site applications.Compared to the traditional microextraction techniques, the most important advantage of TFME is its enhanced sensitivity due to the relatively larger extractive phase spread over a larger surface area.The technique, in this way, facilitates fast extraction kinetics and high extractive capacity. Moreover, TFME offers high versatility for device development over classical SPME technologies due to the plethora of available extractive phases, coating methods and geometry options. The goal of this review is to provide a comprehensive summary of the contemporary advances in this exciting field covering novel extractive phases, technological and methodological developments, and relevant cutting-edge applications. Finally, a critical discussion of the future trends on TFME is also presented.
Ibuprofen-templated molecularly imprinted polymers (MIPs) demonstrated high selectivity to ibuprofen in the presence of closely related compounds, naproxen and ketoprofen.
Parabens are used as antimicrobial preservatives in food, cosmetic products and pharmaceuticals regardless of their endocrine disrupting effect. In this study, highly selective molecular imprinted polymers (MIPs) were synthesized in submicron-sizes and converted to an SPME fiber coating through electrospinning process in order to determine parabens in water samples. Conversion of MIP to a fiber is achieved via creation of spacial knitting around MIP by polystyrene. The selectivity and extraction ability of the fibers were compared with the commercial fibers and the corresponding non-imprinted polymer (NIP) coated fiber. The coated fiber showed better extraction ability among them. Also, the results revealed that the fiber has better selectivity for benzyl paraben and the other structurally-related compounds, such as methyl and propyl paraben. Extraction efficiency of prepared fibers for three parabens has been tested by spiking bottled, tap and sea water samples. The recoveries changed between 92.2 ± 0.8 and 99.8 ± 0.1 for three different water types. This method could be used for selective and sensitive determination of parabens in aqueous samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.