The present study was conducted to evaluate the lactic acid- and acetaldehyde-producing abilities of lactic acid bacterial species isolated from traditionally manufactured Turkish yogurts using HPLC. The lactic acid bacterial species purified from the yogurts were the 2 most widely used species in industrial yogurt production: Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria have the ability to ferment hexose sugars homofermentatively to generate lactic acid and some carbonyl compounds, such as acetaldehyde through pyruvate metabolism. The levels of the compounds produced during fermentation influence the texture and the flavor of the yogurt and are themselves influenced by the chemical composition of the milk, processing conditions, and the metabolic activity of the starter culture. In the study, morphological, biochemical, and molecular characteristics were employed to identify the bacteria obtained from homemade yogurts produced in different regions of Turkey. A collection of 91 Strep. thermophilus and 35 L. bulgaricus strains were investigated for their lactic acid- and acetaldehyde-formation capabilities in various media such as cow milk, LM17 agar, and aerobic-anaerobic SM17 agar or de Man, Rogosa, and Sharpe agar. The amounts of the metabolites generated by each strain in all conditions were quantified by HPLC. The levels were found to vary depending on the species, the strain, and the growth conditions used. Whereas lactic acid production ranged between 0 and 77.9 mg/kg for Strep. thermophilus strains, it ranged from 0 to 103.5 mg/kg for L. bulgaricus. Correspondingly, the ability to generate acetaldehyde ranged from 0 to 105.9 mg/kg in Strep. thermophilus and from 0 to 126.9 mg/kg in L. bulgaricus. Our study constitutes the first attempt to determine characteristics of the wild strains isolated from traditional Turkish yogurts, and the approach presented here, which reveals the differences in metabolite production abilities of the wild lactic acid bacteria strains, holds the potential for the selection of the most desirable strains to be used as starters in commercial yogurt manufacture in the future.
Streptococcus thermophilus is a lactic acid bacterium and used as starter culture in the dairy industry, mainly in the manufacture of yoghurt, with Lactobacillus delbrueckii subsp. bulgaricus. It produces lactic acid as a major fermentation end product and some carbonyl compounds through sugar metabolism. The level of metabolites could be improved using molecular biotechnology. The genes of als, encoding α-acetolactate synthase (Als), the pflA, encoding pyruvate-formate lyase activating enzyme (PflA), and the adhB which encodes alcohol dehydrogenase (AdhB) of S. thermophilus NCFB2393 strain were amplified by polymerase chain reaction and separately cloned into the overexpression vector pNZ276 under the control of the lacA promoter. The strains were transformed individually with the constructed plasmids. Their abilities to generate important metabolites such as pyruvate, lactate, formate, acetaldehyde, acetoin, ethanol, and 2,3-butanediol in LM17 medium were analyzed using high-performance liquid chromatography. High level of 2,3-butanediol was obtained by overexpressing the als gene. The level of formate increased slightly by overexpressing the pflA gene. The overexpression of the adhB gene, on the other hand, resulted in a significant increase in the ethanol level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.