The rat esophagus shares some cellular features with skin squamous epithelium and striated muscle that express high levels of corticotropin-releasing factor type 2 (CRF2) receptors or their cognate ligand urocortin (Ucn) 1, 2, and 3. We investigated the expression and cell signaling of CRF2 receptors and ligands in the rat esophagus and lower esophageal sphincter (LES) by RT-PCR and quantitative PCR in normal and corticosterone-treated whole esophageal tissue, laser capture microdissected layers, and isolated esophageal cells. The expression of CRF2 receptor protein and intracellular cAMP and ERK1/2 responses to CRF agonists and CRF2 antagonist were determined in cultured esophageal cells and HEK-293 cells transfected with CRF2b receptors. CRF2 was abundantly expressed in the mucosa and longitudinal muscle layers of the esophagus and LES, whereas CRF1 expression was scarce. CRF2b wild-type transcript was predominantly expressed in the esophagus, and in addition, several new CRF2 splice variants including six CRF2a isoforms were identified. Expression of Ucn 1, Ucn 2, and to a smaller extent Ucn 3, but not CRF mRNA, was detected in the esophagus and LES. Ucn 1 and Ucn 2 stimulated dose-dependent cAMP production and ERK1/2 phosphorylation in the esophageal cells, whereas CRF and CRF1 agonist, cortagine, had less potent effects. In addition, Ucn 2-stimulated cAMP and ERK responses were blocked by the CRF2 antagonist, astressin2-B. These data established the presence of a prominent CRF2 signaling system in the esophagus and LES-encompassing multiple CRF2 receptor variants and Ucn, suggesting a functional role in secretomotor activity and epithelial and muscle cell proliferation.
Clopidogrel inhibits the angiogenesis of gastric ulcer healing at least partially by the inhibition of the VEGF-VEGFR2-ERK signal transduction pathway.
ObjectivesThe pathogenesis of the higher occurrence of peptic ulcer disease in cirrhotic patients is complex. Platelets can stimulate angiogenesis and promote gastric ulcer healing. We compared the expressions of proangiogenic growth factors and their receptors in the gastric ulcer margin between cirrhotic patients with thrombocytopenia and those of non-cirrhotic patients to elucidate possible mechanisms.MethodsEligible cirrhotic patients (n = 55) and non-cirrhotic patients (n = 55) who had gastric ulcers were enrolled. Mucosa from the gastric ulcer margin and non-ulcer areas were sampled and the mRNA expressions of the proangiogenic growth factors (vascular endothelial growth factor [VEGF], platelet derived growth factor [PDGF], basic fibroblast growth factor [bFGF]) and their receptors (VEGFR1, VEGFR2, PDGFRA, PDGFRB, FGFR1, FGFR2) were measured and compared. Platelet count and the expressions of these growth factors and their receptors were correlated with each other.ResultsThe two groups were comparable in terms of gender, ulcer size and infection rate of Helicobacter pylori. However, the cirrhotic group were younger in age, had a lower platelet count than those in the non-cirrhotic group (p<0.05). The cirrhotic patients had diminished mRNA expressions of PDGFB, VEGFR2, FGFR1, and FGFR2 in gastric ulcer margin when compared with those of the non-cirrhotic patients (p<0.05). Diminished expressions of PDGFB and VEGFR2, FGFR1, and FGFR2 were well correlated with the degree of thrombocytopenia in these cirrhotic patients (ρ>0.5, p<0.001).ConclusionsOur findings implied that diminished activity of proangiogenic factors and their receptors may contribute to the pathogenesis of gastric ulcers in cirrhotic patients.
Steel slag is a secondary product from steelmaking process through alkaline oxygen furnace or electric arc furnace (EAF). The disposal of steel slag has become a thorny environmental protection issue, and it is mainly used as unbound aggregates, e.g., as a secondary component of asphalt concrete used for road paving. In this study, the characteristics of compacted porous steel slag disc (SSD) and its application in phosphorous (P)-rich water filtration are discussed. The SSD with an optimal porosity of 10 wt% and annealing temperature of 900 °C, denoted as SSD-P (10, 900) meets a compressive strength required by ASTM C159-06, which has the capability of much higher than 90% P removal (with the effluent standard < 4 mg P/L) within 3 h, even after eight filtration times. No harmful substances from SSD have been detected in the filtered water, which complies with the effluent standard ISO 14001. The reaction mechanism for P-rich water filtration is mediated by water, followed by two reaction steps—CaO in SSD hydrolyzed from the matrix of SSD to Ca2+ and reacting with PO43−. However, the microenvironment of water is influenced by the pH value of the P-rich water at different filtration times and the kind of P-rich water with different free positive ion that interferes the reactions of the release of Ca2+. This study demonstrates the application of circular economy in reducing steel slag deposits, filtering P-rich water, and collecting Ca3(PO4)2 precipitate into fertilizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.