The X-ray crystal structure of the proform of human matrix metalloproteinase MMP9 has been solved to 2.5 A resolution. The construct includes the prodomain, the catalytic domain and three FnII (fibronectin type II) domains. The prodomain is inserted into the active-site cleft, blocking access to the catalytic zinc. Comparison with the crystal structure of the most closely related MMP, MMP2, indicates that the conformations of residues in the active-site cleft and in the cysteine-switch peptide of the prodomain are highly conserved and that design of MMP9-specific inhibitors will be challenging. In common with MMP2, the MMP9 S1' inhibitor-binding pocket is large compared with that of other MMPs. One small point of difference in the S1' binding pockets of MMP9 and MMP2 may provide an opportunity to explore the design of specific inhibitors. The side chain of Arg424 in MMP9 is angled slightly away from the S1' pocket when compared with the corresponding residue in MMP2, Thr424. The secondary structure of the FnII domains is conserved between the two closely related MMPs, although the second FnII domain makes no contact with the catalytic domain in MMP9, while the same domain in MMP2 has a substantial area of interaction with the catalytic domain.
The bacteriophage ?~ transcriptional activator protein cII is a DNA-binding protein that coordinately regulates transcription from phage promoters important for lysogenic growth. We have genetically and structurally characterized more than 80 different single amino acid substitutions in this 97-amino-acid protein. A subset of 25 of these variant proteins was utilized for detailed biochemical analysis, which allows us to define specific domains critical for sequence-selective DNA recognition, nonspecific DNA binding, and protein oligomerization. The mutation studies also demonstrated the remarkable correlation of oligomeric structure of cII protein to its stability within the bacterial host. An Escherichia coli HtpR-strain has been identified that greatly stabilizes these highly unstable cII mutants.
Interleukin (IL)-18 has profound antitumor activity when administered at high doses as a single agent for prolonged periods in BALB/c mice bearing late, well-established MOPC-315 tumors. Management with a qD x 27 schedule resulted in regression of tumors in all animals receiving 5 mg/kg/d. A protracted daily management regimen appears to be necessary to induce regression in this advanced tumor model. Biologic markers were assessed and appear to be potentially useful in evaluating the immunologic and antitumor activity of IL-18. The biomarkers of IL-18's immunologic activity include, but are not limited to, IL-1alpha, IL-2, IL-8, IL-10, IL-12, IL-13, interferon-gamma, tumor necrosis factor-alpha, and granulocyte-macrophage colony-stimulating factor. The profile of these circulating cytokines and their expression levels at baseline, and after IL-18 delivery, can be measured in the serum, as well as from splenocytes of mice or human peripheral blood mononuclear cells derived from either normal subjects or patients with cancer. We compared IL-18 and IL-12 alone or in combination for their ability to induce cytokine production and natural killer cytolytic activity. Our data support the notion that IL-18 induces a predominantly Th1 response, and that the mechanism of IL-18 activity differs from that of IL-12. The biologic activity of IL-18 management revealed by increases in serum levels of cytokines and enhancement of natural killer cytolytic activity will be useful as clinical trials initiate in 2002. Expression of interferon-gamma and granulocyte-macrophage colony-stimulating factor serum levels correlates directly over a broad dose escalation with the level of IL-18. Therefore, this provides a convenient pharmacodynamic reference to the biologic response to IL-18 that may serve to guide the conduct of clinical trials.
IL-18 is a cytokine with potent IFN-gamma inducing activities as well as an important mediator of Th1 polarized immune responses. In this study we demonstrated that IL-18 induces the concentration-dependent production of the proinflammatory mediators IFN-gamma, IL-6, and GM-CSF, but not the anti-inflammatory cytokine, IL-10 from peripheral blood lymphocytes in the presence of mitogen. Three neutralizing IL-18 monoclonal antibodies (MAbs) were investigated, one of which (2C10) inhibited IL-18 bioactivity with an IC50 of 0.1 nM and had a K(D) of 3.9 x 10(-11) M. A NOD/SCID mouse model engrafted with human peripheral blood lymphocytes was developed to test the in vivo efficacy of this MAb. The IFN-gamma production induced by LPS administration was inhibited approximately 90% by prior dosing of MAb 2C10. The therapeutic utility of a high-affinity IL-18 MAb may be of benefit in Th1-driven autoimmune diseases such as rheumatoid arthritis and Crohn's Disease, where elevated levels of IL-18 have been observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.