Previous evidence showed the ability of the quinazoline-based A 1 -adrenoreceptor antagonist doxazosin to suppress prostate tumor growth via apoptosis. In this study, we carried out structural optimization of the chemical nucleus of doxazosin and a subsequent structure-function analysis toward the development of a novel class of apoptosis-inducing and angiogenesis-targeting agents. Our lead compound, DZ-50, was effective at reducing endothelial cell viability via a nonapoptotic mechanism. Treatment with DZ-50 effectively prevented in vitro tube formation and in vivo chorioallantoic membrane vessel development. Confocal microscopy revealed a significantly reduced ability of tumor cells to attach to extracellular matrix and migrate through endothelial cells in the presence of DZ-50. In vivo tumorigenicty studies using two androgen-independent human prostate cancer xenografts, PC-3 and DU-145, showed that DZ-50 treatment leads to significant suppression of tumorigenic growth. Exposure to the drug at the time of tumor cell inoculation led to prevention of prostate cancer initiation. Furthermore, DZ-50 resulted in a reduced formation of prostate-tumor derived metastatic lesions to the lungs in an in vivo spontaneous metastasis assay. Thus, our drug discovery approach led to the development of a class of lead (quinazoline-based) compounds with higher potency than doxazosin in suppressing prostate growth by targeting tissue vascularity. This new class of quinazoline-based compounds provides considerable promise as antitumor drugs for the treatment of advanced prostate cancer. [Cancer Res 2007;67(23):11344-52]
The alpha1-adrenoreceptor antagonist doxazosin induces apoptosis in malignant cells with moderate potency via an alpha1-adrenoreceptor-independent mechanism. Here, we demonstrate that the ability of doxazosin to induce apoptosis in PC-3 prostate cancer cells was, in part, attributable to the inhibition of protein kinase B (PKB)/Akt activation. The separation of the effect of doxazosin on apoptosis from its original pharmacological activity provides molecular underpinnings to develop novel antitumor agents. Replacement of the (2,3-dihydro-benzo[1,4]dioxane)-carbonyl moiety of doxazosin with aryl-sulfonyl functions dramatically improves the potency in facilitating Akt deactivation and inducing apoptosis. The optimal compounds, 33 and 44, were effective in apoptosis induction at low micromolar concentrations irrespective of androgen dependency and p53 functional status. Both agents were active in suppressing the growth of a panel of 60 cancer-cell lines with IC50 values of 2.2 and 1.5 microM, respectively. Together, these in vitro efficacy data suggest the translational potential of these agents in prostate cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.