A two-step process has been invented to prepare sulfonated polypropylene from chlorinated polypropylene via thiolation and successive oxidation to enhance the dyeability of polypropylene. With a short thiolation reaction time of 3 h in an N-methyl-2-pyrrolidone solution, 1.7-20.5% sulfur can be incorporated into a polypropylene bulk effectively. Chlorine-thiol substitution and hydrosulfide conversion have been examined with elemental analysis, and their behaviors as a function of the SH/Cl ratio can be explained with an equilibrium model of hydrosulfide and accessible chlorine in a given timescale. Oxidation of thiol has been performed successfully with hydrogen peroxide. The evolution of oxidation intermediates such as sulfoxide, sulfone, sulfinic acid, and sulfonic acid can be identified by Raman and Fourier transform infrared analyses. Sulfonated polypropylene can be stained by a basic dye very effectively, and its dye uptake reaches 190 mmol of dye/kg of polymer for 3.6 mmol of sulfur/g of polymer. This dye uptake is 20 times more effective than that of chlorinated polypropylene on a molar basis. Thus, it is clear that a modification can be performed effectively to enhance the dyeability of polypropylene.
Liposomes are small lipid vesicles that mimic biological membranes and have been spotlighted in the clinical field due to their ability to enclose a biologically active substance of any structure and to release it into the host's body. This study compares the physicochemical properties and biological activity of nano-liposomes with different compositions to determine the most effective formulation for further in vivo application. Nano-scale liposomes composed of different ratios of 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), dihexadecyl phosphate (DCP), and cholesterol (Chol): DMPE, DMPE/DCP, DMPE/Chol, and DMPE/DCP/Chol were produced. The thermal phase transition was assessed via differential scanning calorimetry (DSC); the particle size, via dynamic light scattering (DLS); the colloidal stability, via the zeta potential; the direct morphological characterization, via transmission electron microscopy (TEM); and the protein encapsulation efficiency. The bioavailability was also investigated with respect to the immunological responses via porcine interferon gamma (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay in peripheral blood mononuclear cells (PBMC) of immunocompetent pigs. All the liposomes can be expected to be stable in an in vivo physiological temperature, and the liposomes that were prepared from DMPE/DCP showed the best efficiency in the in vitro model that mimicked the release of a bioactive substance in vivo. In the result of DLS and the zeta potential for the investigation of the colloidal stability in the system, DMPE/DCP/Chol appeared better than the other formulations. The porcine IFN-gamma ELISPOT assay results postulated that DMPE/DCP most potently induced the IFN-gamma secretion by PBMC, followed by DMPE/DCP/Chol and DMPE alone, in that order.
This paper proposes a wireless control system for a 3D Microscope which is designed to move in two directions - polar and azimuth angle. Both angles are controlled with electric motors based on the users joystick command and the pechan prism motor is controlled to compensate image rotation whiling moving in polar angle. Since 3D microscope can be used for arbitrary rotation in azimuth angle, wireless control system is proposed to avoid twisting of power and signal wires. The validity of our system is shown through experimental works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.