Mice were fed either 13 nm silver nanoparticles or 2-3.5 mum silver microparticles. The livers were then obtained after 3 days and subjected to a histopathological analysis. The nanoparticle-fed and microparticle-fed livers both exhibited lymphocyte infiltration in the histopathological analysis, suggesting the induction of inflammation. In vitro, a human hepatoma cell line (Huh-7) was treated with the same silver nanoparticles and microparticles. The mitochondrial activity and glutathione production were hardly affected. However, the DNA contents decreased 15% in the nanoparticle-treated cells and 10% in the microparticle-treated cell, suggesting a more potent induction of apoptosis by the nanoparticles. From a microarray analysis of the RNA from the livers of the nano- and micro-particle-fed mice, the expression of genes related to apoptosis and inflammation was found to be altered. These gene expression changes in the nanoparticle-treated livers lead to phenotypical changes, reflecting increased apoptosis and inflammation. The changes in the gene expression were confirmed by using a semi-quantitative RT-PCR.
Microprocessor, which consists of a ribonuclease III DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) maturation by cleaving primary miRNA transcripts (pri-miRNAs). We recently demonstrated that the DGCR8 dimer recognizes the apical elements of pri-miRNAs, including the UGU motif, to accurately locate and orient Microprocessor on pri-miRNAs. However, the mechanism underlying the selective RNA binding remains unknown. In this study, we find that hemin, a ferric ion-containing porphyrin, enhances the specific interaction between the apical UGU motif and the DGCR8 dimer, allowing Microprocessor to achieve high efficiency and fidelity of pri-miRNA processing in vitro. Furthermore, by generating a DGCR8 mutant cell line and carrying out rescue experiments, we discover that hemin preferentially stimulates the expression of miRNAs possessing the UGU motif, thereby conferring differential regulation of miRNA maturation. Our findings reveal the molecular action mechanism of hemin in pri-miRNA processing and establish a novel function of hemin in inducing specific RNA-protein interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.