Inkjet-printed patterns were formed on a paper substrate using anti-oxidant copper nano-ink for application to disposable electronic devices. To prevent substrate damage, the pattern was flash light sintered under ambient conditions using the multi-pulse technique. Pure copper nanoparticles were coated with 1-octanethiol for oxidation resistance using the dry-coating method. Mixing these with 1-octanol solvent at a concentration of 30 wt% produced the copper nano-ink. Photo paper was used as the substrate. The contact angle between the photo paper and copper nano-ink was 37.2° and the optimal energy density for the multi-pulse flash light sintering technique was 15.6 J/cm2. Using this energy density, the optimal conditions were an on-time of 2 ms (duty cycle of 80%) for three pulses. The resistivity of the resulting pattern was 2.8 × 10−7 Ω∙m. After bending 500 times to a radius of curvature of 30 mm, the relative resistance (ΔR/R0) of the multi-pulse flash light-sintered pattern hardly changed compared to that of the unbent pattern, while the single-pulse-sintered pattern showed dramatic increase by 8-fold compared to the unbent pattern. Therefore, the multi-pulse light sintering technique is a promising approach to produce an inkjet-printed pattern that can be applied to disposable electronic devices.
A novel method of carbonaceous coating on the surface of copper particles was developed through a chemical vapor deposition (CVD) process to prevent the oxidation of copper nanoparticles (CNPs). The types of poly(vinyl pyrrolidone) (PVP) used were K-12 (M
W 3,500) and K-30 (M
W 45,000). The amounts of PVP used ranged from 10 to 50 wt %. Additionally, processing temperatures of 900 and 875 °C were tested and compared. The optimum CVD process conditions for the carbonaceous coating were as follows: 875 °C processing temperature, 50 wt % K12 PVP solution, and gas conditions of
. The resistivity change in the fabricated copper pattern was confirmed that the initial resistivity value of the ink with a mixing ratio of carbonaceous-coated CNPs to 1-octanethiol-coated CNPs of
(w/w) maintained its initial resistivity value of 2.93 × 10−7 Ω·m for more than 210 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.