A spaceborne cryogenic cooler induces undesirable microvibration disturbances during its on-orbit operation, which is one of the main sources that degrades the image quality of submeter-level high-resolution observation satellites. Several types of vibration isolation systems based on passive approaches have been developed for reducing the microvibration of the cooler. A coil-spring-type passive vibration isolation system developed in a previous study has shown excellent performance in both launch vibration and on-orbit microvibration isolation. To improve the capability of the conventional cooler isolator, including the position sensitivity and launch vibration reduction, we propose a new version of a dual coil-spring-type passive vibration isolator system. The effectiveness of the newly proposed design was validated through a microjitter measurement test, position sensitivity test, and qualification-level launch vibration test of the isolator.
The on-board tilting mirror calibration mechanism has a mechanical driving part that helps to achieve the main functional modes of deployment and stow when calibrating a spaceborne imaging sensor. In general, it is necessary to consider a holding and release device in the mechanism design, to secure the structural safety of the mechanical driving part in severe launch environments. However, in the present study, we proposed a novel design strategy based on mass balancing, to guarantee mechanical safety on the driving part of the tilt mirror mechanism, although the implementation of the holding and release mechanism was not considered in the design. The effectiveness of the proposed design was experimentally verified via launch vibration and life cycle tests. The test results demonstrated that the mechanism fulfills all the required functions, and the design approach proposed in this study is effective for ensuring mechanical safety on the driving part of the tilting mirror mechanism in severe launch vibration environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.