The degradation of diethyl phthalate (DEP) in an aqueous solution during ozonation was investigated by identifying the oxidation intermediates using GC-MS. The experiments were carried out in semi-batch mode with a 1.5 mg l
21-min ozone dose. The proposed degradation pathways were divided into hydrolysis of the aliphatic chain (pathway (A)) and hydroxylation resulting from zOH attack in the aromatic ring (pathway (B)). With increasing ozone dose, the aromatic ring of DEP was opened and acidic compounds, such as malonic acid, succinic acid and glutaric acid were formed. In addition, the ozonation of DEP for 18 min induced hydrogen peroxide (H 2 O 2 ) generation at levels six times higher than pure water. Of the intermediates indentified, phthalic acid (PA) and phthalic anhydride (PAH) enhanced the degradation of DEP by promoting ozone decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.