Segregated-network carbon nanotube (CNT)-polymer composites were prepared, and their thermoelectric properties were measured as a function of CNT concentration at room temperature. This study shows that electrical conductivity can be dramatically increased by creating a network of CNTs in the composite, while the thermal conductivity and thermopower remain relatively insensitive to the filler concentration. This behavior results from thermally disconnected, but electrically connected, junctions in the nanotube network, which makes it feasible to tune the properties in favor of a higher thermoelectric figure of merit. With a CNT concentration of 20 wt %, these composites exhibit an electrical conductivity of 4800 S/m, thermal conductivity of 0.34 W/m x K and a thermoelectric figure of merit (ZT) greater than 0.006 at room temperature. This study suggests that polymeric thermoelectrics are possible and provides the basis for further development of lightweight, low-cost, and nontoxic polymer composites for thermoelectric applications in the future.
Every cell has a silver lining! The toxicity of Ag nanoparticles is investigated using a panel of recombinant bioluminescent bacteria. The presence of the nanoparticles leads to the production of a superoxide radical (see figure). Furthermore, the Ag nanoparticles damage the cellular membranes, causing a disruption in the ion efflux system. Thus, the cells cannot effectively extrude the Ag ions and, hence, Ag nanoparticles cause more damage than do Ag ions.
Poly(acrylic acid) is shown to control the level of SWNT dispersion in aqueous mixtures and the state of dispersion in a solid composite. At low pH, PAA-stabilized suspensions containing 0.1 wt % SWNT have a waterlike viscosity, but this mixture thickens as the pH is raised. This behavior is reversed when pH is again lowered. Changing pH varies the SWNT microstructure between aggregated and well-exfoliated states, as evidenced by electron microscopy and electrical conductivity measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.