Cell-free protein synthesis (CFPS) is an established biotechnology tool that has shown great utility in many applications such as prototyping proteins, building genetic circuits, designing biosensors, and expressing cytotoxic proteins. Although CFPS has been widely deployed, the many, varied methods presented in the literature can be challenging for new users to adopt. From our experience and others who newly enter the field, one of the most frustrating aspects of applying CFPS as a laboratory can be the large levels of variability that are present within experimental replicates. Herein we provide a retrospective summary of CFPS methods that reduce variability significantly. These methods include optimized extract preparation, fully solubilizing the master mix components, and careful mixing of the reaction. These have reduced our coefficient of variation from 97.3% to 1.2%. Moreover, these methods allow complete novices (e.g. semester rotation undergraduate students) to provide data that is comparable to experienced users, thus allowing broader participation in this exciting research area.
The COVID-19 pandemic has emphasized the importance of widespread testing to control the spread of infectious diseases. The rapid development, scale-up, and deployment of viral and antibody detection methods since the beginning of the pandemic have greatly increased testing capacity. Desirable attributes of detection methods are low product costs, self-administered protocols, and the ability to be mailed in sealed envelopes for the safe analysis and subsequent logging to public health databases. Herein, such a platform is demonstrated with a screen-printed, inductor−capacitor (LC) resonator as a transducer and a toehold switch coupled with cell-free expression as the biological selective recognition element. In the presence of the N-gene from SARS-CoV-2, the toehold switch relaxes, protease enzyme is expressed, and it degrades a gelatin switch that ultimately shifts the resonant frequency of the planar resonant sensor. The gelatin switch resonator (GSR) can be analyzed through a sealed envelope allowing for assessment without the need for careful sample handling with personal protective equipment or the need for workup with other reagents. The toehold switch used in this sensor demonstrated selectivity to SARS-CoV-2 virus over three seasonal coronaviruses and SARS-CoV-1, with a limit of detection of 100 copies/μL. The functionality of the platform and assessment in a sealed envelope with an automated scanner is shown with overnight shipment, and further improvements are discussed to increase signal stability and further simplify user protocols toward a mail-in platform.
Recently a strong increase in R&D investment has encouraged a firm to create a more effective and efficient R&D process, which allows it to save time and costs significantly. In order to build such a process, a firm should be able to evaluate its process, based on which the process can be improved. With all its importance and value, however, the previous studies on R&D process have seldom focused on the method of evaluating the process. Therefore this study aims to develop a framework for evaluating R&D process. For the purpose, CMMI (Capability Maturity Model Integrated) is used as a main method, which is a process improvement approach that provides organizations with the essential elements of effective processes that ultimately improve their performance and thus considered suitable for this research. We tried to develop a framework for evaluating R&D process based on the CMMI approach by modifying it to be suitable for measuring R&D performance where the essential elements for effective R&D process are obtained from the literature on best practices. A simple case study was conducted to illustrate how the proposed framework could be applied. The research results are expected to guide R&D process improvement across a project, a division, or an entire organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.