Abstract. This study was conducted to investigate the effect of grafting using commercial rootstocks and breeding lines on growth and resistance to both Phytophthora blight (Phytophthora capsici) and bacterial wilt (Ralstonia solanacearum), and to evaluate the breeding lines as candidates rootstocks for grafted peppers.
In vitro shoot proliferation from stem disc of Allium chinense, a vegetatively propagated plant, was investigated in this experiment. In the present study, shoots were formed directly on stem discs on a medium containing 1 mg/l N 6 -benzyladenine (BA) and 0.5 mg/lanaphthaleneacetic acid (NAA). These shoots were further cultured on MS media supplemented with various levels of BA in combination with NAA, and new shoot clusters developed easily from the explants cultured despite considerable differences in the induction of shoot clusters with different levels of BA and NAA. The most productive combination of growth regulators proved to be 1.0 mg/l BA and 1.0 mg/l NAA, in which about 17 shoots were produced per cluster in 8 weeks culture. Most of the formed shoots were rooted 15 days after being cultured on MS media supplemented with 0.1-1.0 mg/l NAA. The survival rate of the plantlets under ex vitro conditions was 95% in pots filled with a peat: sand (2:1 v/v) mixture after two weeks. In vitro bulblet formation were strongly promoted by the high temperature of 30°C compared to that at 25, 20 and 15°C, and 12% (w/v) sucrose appeared to be optimal for bulblet development. Results from this study demonstrated that A. chinense could be in vitro propagated by using stem discs and in vitro bulblet formation could be achieved.
Melons (Cucumis melo L.) are generally grafted onto Cucurbita rootstocks to manage soilborne pathogens such as Monosporascus root rot and vine decline (MRR/VD) and Fusarium wilt. However, grafting onto Cucurbita rootstocks reportedly results in the reduction of fruit quality. In this study, the resistance to MRR/VD, yield, and fruit quality of melons grafted onto melon rootstocks were evaluated under greenhouse conditions. Eight melon rootstocks (R1 to R8) were used and the inodorus melon 'Homerunstar' was used as scion. Melon rootstocks R1 to R6 were selected based on resistance to MRR/VD under greenhouse conditions. Non-grafted 'Homerunstar' and plants grafted onto squash interspecific hybrid 'Shintozwa' rootstock (Cucurbita maxima D. × C. moschata D.) served as controls. Grafted melons were cultivated in the greenhouse infested with Monosporascus cannonballus during two growing seasons (summer and autumn). The responses to MRR/VD, yield, and fruit quality differed depending on the rootstocks and growing season. The melons grafted onto 'Shintozwa' exhibited less severe disease symptoms and higher survival rates than non-grafted melons in both seasons. While the melon rootstocks in the summer cultivation did not increase the survival rate compared to non-grafted melons, the melon rootstocks R1 and R2 in the autumn cultivation led to higher survival rates. The melon rootstocks resistant to MRR/VD increased the percentage of marketable fruits and marketable yields. Grafting onto the melon rootstocks caused little or no reduction of fruit quality such as low calcium content, fruit softening, and vitrescence, especially in lower-temperature autumn season. Accordingly, these results suggest that grafting onto the melon rootstocks may increase the tolerance to MRR/VD and the marketable yield without a reduction of fruit quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.