CO 2 mineralization is a method of sequestering CO 2 in the form of carbonated minerals. Brine discharged from seawater desalination is a potential source of Mg and Ca, which can precipitate CO 2 as forms of their carbonate minerals. The concentration of Mg and Ca in brine are twice those in the seawater influent to desalination process. This study used a cycle for CO 2 mineralization that involves an increase in the pH of the brine, followed by CO 2 bubbling, and, finally, filtration. To the best of our knowledge, this is the first time that non-synthesized brine from a seawater desalination plant has been used for CO 2 mineralization. The resulting precipitates were CaCO 3 (calcite), Mg 5 (CO 3 ) 4 (OH) 2 ·4H 2 O (hydromagnesite), and NaCl (halite) with these materials being identified by X-ray Diffraction (XRD), Fourier transform infrared (FTIR) and thermo gravimetric-differentail thermal Analysis (TGA)-DTA. Despite the presence of Ca with Mg in brine being unfavorable for the precipitation of Mg carbonate, Mg reacted with CO 2 to form hydromagnesite at a yield of 86%. Most of the Ca formed calcite, at 99% yield. This study empirically demonstrates that brine from seawater desalination plants can be used for CO 2 mineralization.
SPLITT fractionation (SF) allows continuous (and thus a preparative scale) separation of micronsized particles into two size fractions ('fraction-a' and 'fraction-b'). SF is usually carried out in a thin rectangular channel with two inlets and two outlets, which is equipped with flow stream splitters at the inlet and the outlet of the channel, respectively. A new large scale splitter-less gravitational SF (GSF) system had been assembled, which was designed to eliminate the flow stream splitters and thus is operated by the full feed depletion (FFD) mode (FFD-GSF). In the FFD mode, there is only one inlet through which the sample is fed. There is no carrier liquid fed into the channel, and thus prevents the sample dilution. The effects of the sample-feeding flow rate, the channel thickness on the fractionation efficiency (FE, number % of particles that have the size predicted by theory) of FFD-GSF was investigated using industrial polyurethane (PU) latex beads. The carrier liquid was water containing 0.1% FL-70 (particle dispersing agent) and 0.02% sodium azide (used as bactericide).The sample loading rate was varied from about 4 to 7 L/hr with the sample concentration fixed at 0.01%.The GSF channel thickness was varied from 900 to 1300 µm. Particles exiting the GSF channel were collected and monitored by optical microscopy (OM). Sample recovery was monitored by collecting the fractionated particles on a 0.45 µm membrane filter. It was found that FE of fraction-a was increased as the channel thickness increases, and FE of fraction-b was increased as the flow rate was increased. In all cases, the sample recovery has higher than 95%. It seems the new splitter-less FFD GSF system could become a useful tool for large scale separations of various types of micron-sized particles.요 약: SPLITT 분획법(Split-flow thin cell fractionation, SF)은 입자성 물질이나 거대분자를 크기에 ★ Corresponding author
대용량 splitter less full-feed depletion SPLITT 분획법 (Large scale FFD-SF)에서의 분획효율(FE)및 시료처리량(TP)의 최적화 (2015. 12. 4. 접수, 2015. 12. 11. 수정, 2015. 12. 15. 승인)Abstract: Split-flow thin cell fractionation (SPLITT fractionation, SF) is a particle separation technique that allows continuous (and thus a preparative scale) separation into two subpopulations based on the particle size or the density. In SF, there are two basic performance parameters. One is the throughput (TP), which was defined as the amount of sample that can be processed in a unit time period. Another is the fractionation efficiency (FE), which was defined as the number % of particles that have the size predicted by theory. Full-feed depletion mode (FFD-SF) have only one inlet for the sample feed, and the channel is equipped with a flow stream splitter only at the outlet in SF mode. In conventional FFD-mode, it was difficult to extend channel due to splitter in channel. So, we use large scale splitter-less FFD-SF to increase TP from increase channel scale. In this study, a FFD-SF channel was developed for a large-scale fractionation, which has no flow stream splitters ('splitter less'), and then was tested for optimum TP and FE by varying the sample concentration and the flow rates at the inlet and outlet of the channel. Polyurethane (PU) latex beads having two different size distribution (about 3~7 µm, and about 2~30 µm) were used for the test. The sample concentration was varied from 0.2 to 0.8% (wt/vol). The channel flow rate was varied from 70, 100, 120 and 160 mL/min. The fractionated particles were monitored by optical microscopy (OM). The sample recovery was determined by collecting the particles ★ Corresponding author
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.