In this study, we examined the potentially beneficial effects of bovine colostrum-derived exosomes on UV-induced aging and damage in three major resident skin cells including keratinocytes, melanocytes, and fibroblasts. The treatment with colostrum exosomes prevented the UV-induced generation of intracellular reactive oxygen species in epidermal keratinocytes. In UV-stimulated melanocytes, colostrum exosomes could also significantly reduce the production of the protective skin-darkening pigment melanin, which may help to reduce the risk of excessive melanin formation causing skin hyperpigmentation disorders. In the human dermal fibroblasts treated with colostrum exosomes, the expression of matrix metalloproteinases was suppressed, whereas increased cell proliferation was accompanied by enhanced production of collagen, a major extracellular matrix component of skin. Taken together, our findings indicate that bovine colostrum-derived exosomes having excellent structural and functional stability offer great potential as natural therapeutic agents to repair UV-irradiated skin aging and damage.
New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL(-1), they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL(-1) GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.