Background
Leptomeningeal anastomoses play a critical role in regulating reperfusion following cerebrovascular obstruction; however, methods to evaluate their temporospatial remodeling remains under investigation.
New method
We combined arteriole-specific vessel painting with histological evaluation to assess the density and diameter of inter-collateral vessels between the middle cerebral artery and anterior cerebral artery (MCA-ACA) or posterior cerebral artery (MCA-PCA) in a murine model of permanent middle cerebral artery occlusion (pMCAO).
Results
While the overall density was not influenced by pMCAO, the size of MCA-ACA and MCA-PCA vessels had significantly increased 2 days post-pMCAO and peaked by 4 days compared to the un-injured hemisphere. Using a combination of vessel painting and immunofluorescence, we uniquely observed an induction of cellular division and a remodeling of the smooth muscle cells within the collateral niche following post-pMCAO on whole mount tissue sections. Vessel painting was also applied to pMCAO-injured Cx3cr1GFP mice, in order to identify the spatial relationship between Cx3cr1-positive peripheral-derived monocyte/macrophages and the vessel painted collaterals. Our histological findings were supplemented with analysis of cerebral blood flow using laser Doppler imaging and behavioral changes following pMCAO.
Comparison with existing methods
Compared to polyurethane and latex methods for collateral labeling, this new method provides detailed cell-type specific analysis within the collateral niche at the microscopic level, which has previously been unavailable.
Conclusions
This simple and reproducible combination of techniques is the first to dissect the temporospatial remodeling of pial collateral arterioles. The method will advance investigations into the underlying mechanisms governing the intricate processes of arteriogenesis.
From immunology to neuroscience, interactions between the microbiome and host are increasingly appreciated as potent drivers of health and disease. Epidemiological studies previously identified compelling correlations between perinatal microbiome insults and neurobehavioral outcomes, the mechanistic details of which are just beginning to take shape thanks to germ-free and antibiotics-based animal models. This review summarizes parallel developments from clinical and preclinical research that suggest neuroactive roles for gut bacteria and their metabolites. We also examine the nascent field of microbiome-microglia crosstalk research, which includes pharmacological and genetic strategies to inform functional capabilities of microglia in response to microbial programming. Finally, we address an emerging hypothesis behind neurodevelopmental disorders, which implicates microbiome dysbiosis in the atypical programming of neuroimmune cells, namely microglia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.