This paper describes a technique that combines ideas of phase shifting interferometry (PSI) and two-wavelength interferometry (TWLI) to extend the phase measurement range of conventional single-wavelength PSI. To verify theoretical predictions, experiments have been performed using a solid-state linear detector array to measure 1-D surface heights. Problems associated with TWLPSI and the experimental setup are discussed. To test the capability of the TWLPSI, a very fine fringe pattern was used to illuminate a 1024 element detector array. Without temporal averaging, the repeatability of measuring a surface having a sag of-100 Am is better than 25-A (0.0025%) rms.
This paper describes a method to enhance the capability of two-wavelength phase-shifting interferometry. By introducing the phase data of a third wavelength, one can measure the phase of a very steep wave front. Experiments have been performed using a linear detector array to measure surface height of an off-axis parabola. For the wave front being measured the optical path difference between adjacent detector pixels was as large as 3.3 waves. After temporal averaging of five sets of data, the repeatability of the measurement is better than 25-Å rms (λ (λ = 6328 Å).
This paper describes some practical methods to calibrate the phase shifter in phase-shifting interferometry (PSI). The phase shifter used in the experiment is a piezoelectric transducer (PZT) that has a nonlinearity of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.