Nowadays in the world, due to the constant desire for recycling, many countries are considering the use of recycled plastics on roads. Modification of bitumen for roads in Kazakhstan is considered one of the most suitable and popular approaches. This paper presents the results of research on the modification of bitumen by recycled plastics from waste materials. The paper describes the details of the use of plastic waste as bitumen modifiers, with a specific focus on recycled plastics and how they can potentially be used to enhance bitumen performance and the road durability. The main physical and mechanical characteristics of the modified bitumen were determined after routine tests, penetration and plasticity, softening temperature, brittleness temperature on Fraas and microscopic analysis. The morphology of the modified bitumen was studied using scanning electron microscopy. The results confirm that the modified bitumen complies with the requirements for polymer-bitumen binder of Kazakhstani standards and is suitable for the production of modified bitumen by its physical and chemical characteristics.
The article presents the results of research on the production of polymer-bitumen binder (PBB) based on mixtures of non-oxidized and oxidized petroleum products, namely high-viscosity tar, darkened vacuum distillate, and oxidized petroleum bitumen 70/100, obtained at technological installations of Limited Liability Partnership (LLP) “JV Caspi Bitum’’ and styrene-butadiene-styrene (SBS) block copolymer brand L 30-01A modifier in the presence of a stabilizer. The results obtained show that the introduction of the SBS modifier in the presence of a sulfur stabilizer improves the performance characteristics of PBB, such as elasticity, ductility, softening temperature, penetration, and brittleness temperature.
Transformations of high-molecular-weight compounds of oil sand natural bitumen under the heat treatment were studied in this work. For that purpose the natural bitumen isolated from oil sand taken from the Beke field (Kazakhstan) was used as a substrate. Thermal processing of natural bitumen leads to a general change in the chemical composition of components and to an increase in the output of certain fractions. The contents of oil, tar and asphaltenes were determined and the elemental composition of tar-asphaltene compounds was evaluated. Molecular structures of the tar and asphaltene components of natural bitumen before and after cracking have been defined from the data of elemental analysis, NMR spectroscopy and molecular weight. The high molecular compounds were presented as giant molecules containing small aromatic islands some of which were linked by aliphatic chains, that was proved by infrared spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.