Irony, which is a way of expression through the use of the opposite, commonly occurs in daily social media posts. Hence, automatic detection of irony is essential to understand the semantics of informal texts more accurately. The literature has several sentiment analysis studies on Turkish texts, but those focusing on irony detection are very few. This paper investigates the effectiveness of a rich set of supervised learning methods varying from traditional to deep neural solutions on Turkish texts. Traditional irony detection methods such as Support Vector Machine (SVM) and tree-based binary classifiers are analyzed on Turkish informal texts. Furthermore, such methods are extended by polarity-based information and graph-based similarity scores as features. Additionally, neural architecture based solutions including BERT and various LSTM network models are adapted for the problem. Irony detection performance of all the methods are comparatively analyzed on a data set collected within this study, which is larger than the previously used irony detection data sets in Turkish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.