Commission VII, WG VII/5 KEY WORDS: Harbours, Saliency Analysis, Feature Learning, Fuzzy C-mean, Scale-Invariant Feature Transform (SIFT) ABSTRACT:Harbours are very important objects in civil and military fields. To detect them from high resolution remote sensing imagery is important in various fields and also a challenging task. Traditional methods of detecting harbours mainly focus on the segmentation of water and land and the manual selection of knowledge. They do not make enough use of other features of remote sensing imagery and often fail to describe the harbours completely. In order to improve the detection, a new method is proposed. First, the image is transformed to Hue, Saturation, Value (HSV) colour space and saliency analysis is processed via the generation and enhancement of the co-occurrence histogram to help detect and locate the regions of interest (ROIs) that is salient and may be parts of the harbour. Next, SIFT features are extracted and feature learning is processed to help represent the ROIs. Then, by using classified feature of the harbour, a classifier is trained and used to check the ROIs to find whether they belong to the harbour. Finally, if the ROIs belong to the harbour, a minimum bounding rectangle is formed to include all the harbour ROIs and detect and locate the harbour. The experiment on high resolution remote sensing imagery shows that the proposed method performs better than other methods in precision of classifying ROIs and accuracy of completely detecting and locating harbours.
Abstract:Effectively identifying an airport from satellite and aerial imagery is a challenging task. Traditional methods mainly focus on the use of multiple features for the detection of runways and some also adapt knowledge of airports, but the results are unsatisfactory and the usage limited. A new method is proposed to recognize airports from high-resolution optical images. This method involves the analysis of the saliency distribution and the use of fuzzy rule-based classification. First, a number of images with and without airports are segmented into multiple scales to obtain a saliency distribution map that best highlights the saliency distinction between airports and other objects. Then, on the basis of the segmentation result and the structural information of airports, we analyze the segmentation result to extract and represent the semantic information of each image via the bag-of-visual-words (BOVW) model. The image correlation degree is combined with the BOVW model and fractal dimension calculation to make a more complete description of the airports and to carry out preliminary classification. Finally, the support vector machine (SVM) is adopted for detailed classification to classify the remaining imagery. The experiment shows that the proposed method achieves a precision of 89.47% and a recall of 90.67% and performs better than other state of the art methods on precision and recall.
Commission VII, WG VII/5 KEY WORDS: Harbours, Saliency Analysis, Feature Learning, Fuzzy C-mean, Scale-Invariant Feature Transform (SIFT) ABSTRACT:Harbours are very important objects in civil and military fields. To detect them from high resolution remote sensing imagery is important in various fields and also a challenging task. Traditional methods of detecting harbours mainly focus on the segmentation of water and land and the manual selection of knowledge. They do not make enough use of other features of remote sensing imagery and often fail to describe the harbours completely. In order to improve the detection, a new method is proposed. First, the image is transformed to Hue, Saturation, Value (HSV) colour space and saliency analysis is processed via the generation and enhancement of the co-occurrence histogram to help detect and locate the regions of interest (ROIs) that is salient and may be parts of the harbour. Next, SIFT features are extracted and feature learning is processed to help represent the ROIs. Then, by using classified feature of the harbour, a classifier is trained and used to check the ROIs to find whether they belong to the harbour. Finally, if the ROIs belong to the harbour, a minimum bounding rectangle is formed to include all the harbour ROIs and detect and locate the harbour. The experiment on high resolution remote sensing imagery shows that the proposed method performs better than other methods in precision of classifying ROIs and accuracy of completely detecting and locating harbours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.