[1] Thirty-three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up to two winter snow seasons. Modeled estimates of snow water equivalent (SWE) or depth were compared to observations at forest and open sites at each location. Precipitation phase and duration of above-freezing air temperatures are shown to be major influences on divergence and convergence of modeled estimates of the subcanopy snowpack. When models are considered collectively at all locations, comparisons with observations show that it is harder to model SWE at forested sites than open sites. There is no universal ''best'' model for all sites or locations, but comparison of the consistency of individual model performances relative to one another at different sites (and vice versa). Calibration of models at forest sites provides lower errors than uncalibrated models at three out of four locations. However, benefits of calibration do not translate to subsequent years, and benefits gained by models calibrated for forest snow processes are not translated to open conditions.
ABSTRACT. Many snow models have been developed for various applications such as hydrology, global atmospheric circulation models and avalanche forecasting. The degree of complexity of these models is highly variable, ranging from simple index methods to multi-layer models that simulate snow-cover stratigraphy and texture. In the framework of the Snow Model Intercomparison Project (SnowMIP), 23 models were compared using observed meteorological parameters from two mountainous alpine sites.The analysis here focuses on validation of snow energy-budget simulations. Albedo and snow surface temperature observations allow identification of the more realistic simulations and quantification of errors for two components of the energy budget: the net short-and longwave radiation. In particular, the different albedo parameterizations are evaluated for different snowpack states (in winter and spring). Analysis of results during the melting period allows an investigation of the different ways of partitioning the energy fluxes and reveals the complex feedbacks which occur when simulating the snow energy budget. Particular attention is paid to the impact of model complexity on the energy-budget components. The model complexity has a major role for the net longwave radiation calculation, whereas the albedo parameterization is the most significant factor explaining the accuracy of the net shortwave radiation simulation.
In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m Ϫ2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (Ϯ10 W m Ϫ2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of
A multimodel comparison of the performance of land surface parameterization schemes increases understanding of the land-atmosphere feedback mechanisms over West Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.