A mixture of post-commercial polyolefin waste (PE/PP/PS) was pyrolyzed over various micro- and mesoporous catalysts using a fluidized-bed reactor operating isothermally at ambient pressure. The yield of volatile hydrocarbons with zeolitic nano-catalysts (n-ZSM-5 > n-MOR > n-USY) were higher than with non-zeolitic catalysts (MCM-41 > ASA). MCM-41 with large mesopores and ASA with weaker acid sites resulted in a highly olefinic product mixture with a wide carbon number distribution, whereas n-USY yielded a saturate-rich product mixture with a wide carbon number distribution and substantial coke levels. A novel developed model based on kinetic and mechanistic considerations which take into account chemical reactions and catalyst deactivation for the catalytic degradation of commingled polyolefin waste has been investigated. This model represents the benefits of product selectivity for the chemical composition such as alkanes, alkenes, aromatics and coke in relation to the performance and the particle size selection of the catalyst used as well as the effect of the fluidizing gas and reaction temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.