Scaffolds for articular cartilage repair have to be optimally biodegradable with simultaneous promotion of hyaline cartilage formation under rather complex biomechanical and physiological conditions. It has been generally accepted that scaffold structure and composition would be the best when it mimics the structure of native cartilage. However, a reparative construct mimicking the mature native tissue in a healing tissue site presents a biological mismatch of reparative stimuli. In this work, we studied a new recombinant human type III collagen-polylactide (rhCol-PLA) scaffolds. The rhCol-PLA scaffolds were assessed for their relative performance in simulated synovial fluids of 1 and 4 mg/mL sodium hyaluronate with application of model-free analysis with Biomaterials Enhanced Simulation Test (BEST). Pure PLA scaffold was used as a control. The BEST results were compared to the results of a prior in vivo study with rhCol-PLA. Collectively the data indicated that a successful articular cartilage repair require lower stiffness of the scaffold compared to surrounding cartilage yet matching the strain compliance both in static and dynamic conditions. This ensures an optimal combination of load transfer and effective oscillatory nutrients supply to the cells. The results encourage further development of intelligent scaffold structures for optimal articular cartilage repair rather than simply trying to imitate the respective original tissue.
Prevention of bacterial inflammation around dental implants (peri-implantitis) is one of the keys to success of the implantation and can be achieved by securing the gingival tissue-abutment interface preventing penetration of bacteria. Modern dental practice has adopted zirconia abutments in place of titanium, but the adhesion of gingival tissue to zirconia is inferior to titanium. The aim of this study was to assess and improve the adhesion of mucosal tissues to zirconia posts using sol-gel derived TiO2 coating following dynamic mechanical testing. The posts were cultivated with porcine bone-gingival tissue specimens in vitro for 7 and 14 days and then subjected to dynamic mechanical analysis simulating physiological loading at 1 Hz up to 50 μm amplitude. In parallel in silico analysis of stresses and strains have been made simulating “the worst case” when the fixture fails in osseointegration while the abutment still holds. Results show treatment of zirconia can lead to double interface stiffness (static shear stiffness values from 5–10 to 17–23 kPa and dynamic from 20–50 to 60–125 kPa), invariant viscostiffness (from 5–35 to 45–90 kPa·sα) and material memory values (increased from 0.06–0.10 to 0.17–0.25), which is beneficial in preventing bacterial contamination in dental implants. This suggests TiO2-coated zirconia abutments may have a significant clinical benefit for prevention of the bacterial contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.