The mixture Rasch model is gaining popularity as it allows items to perform differently across subpopulations and hence addresses the violation of the unidimensionality assumption with traditional Rasch models. This study focuses on comparing two common maximum likelihood methods for estimating such models using Monte Carlo simulations. The conditional maximum likelihood (CML) and joint maximum likelihood (JML) estimations, as implemented in three popular R packages are compared by evaluating parameter recovery and class accuracy. The results suggest that in general, CML is preferred in parameter recovery and JML is preferred in identifying the correct number of classes. A set of guidelines is also provided regarding how sample sizes, test lengths or actual class probabilities affect the accuracy of estimation and number of classes, as well as how different information criteria compare in achieving class accuracy. Specific issues regarding the performance of particular R packages are highlighted in the study as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.