We propose Bayesian parametric and semiparametric partially linear regression methods to analyze the outcome-dependent follow-up data when the random time of a follow-up measurement of an individual depends on the history of both observed longitudinal outcomes and previous measurement times. We begin with the investigation of the simplifying assumptions of Lipsitz, Fitzmaurice, Ibrahim, Gelber, and Lipshultz, and present a new model for analyzing such data by allowing subjectspecific correlations for the longitudinal response and by introducing a subject-specific latent variable to accommodate the association between the longitudinal measurements and the follow-up times. An extensive simulation study shows that our Bayesian partially linear regression method facilitates accurate estimation of the true regression line and the regression parameters. We illustrate our new methodology using data from a longitudinal observational study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.